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In memory of Stephane Bressan



1960 - 2000: Early data management
Each application did its own data management directly against storage (e.g., book-selling 
website).



Problems with App Storage Management

• How should we lay out and navigate data?

• How do we keep the application reliable?

• What if we want to share data across apps?

Every app is solving the same problems.



1970s - Relational data model
Turing Award 1981

• Ted Codd was a mathematician working at IBM Research. He 
saw developers spending their time rewriting IMS programs 
every time the database's schema or layout changed.

• Database abstraction to avoid this maintenance:

• Store database in simple data structures.

• Access data through set-at-a-time high-level

language.

• Physical storage left up to implementation.

Codd



Relational Data Model -schema



Relational Data Model - instance



Database applications design and tuning

• The design question

How many tables? What tables? How many columns in each table? What 

columns? What constraints?  

• The tuning question

In addition, what indexes? What queries? What triggers? What stored 

procedures? What views? 



1990s – DATA CUBES
DBMSs would maintain multi-dimensional arrays as pre-computed aggregations to speed up queries.
→ Periodically refreshed materialized views.
→ Administrator had to specify cubes ahead of time.

Data cubes were often introduced in existing operational DBMSs originally designed to operate on 
row-oriented data.

https://en.wikipedia.org/wiki/OLAP_cube


OLTPDatabases

SELECT product, region, cdate,   
SUM(amount) AS total_sales

FROM sales GROUP BY

CUBE (product, region, cdate);

1990s – DATA CUBES



According to Gartner Report [1]

$39.2 billion, 49% of all DBMS revenue from cloud in 2021

On-prem database

$40.8B in 2021

Cloud vs. On-premises Revenue

Cloud database

$39.2B in 2021
Low Cost

Elasticity

Availability

[1] DBMS Market Transformation 2021: The Big Picture, https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/

2000 – 2010s: Rise of cloud computing



2000-2010s: Rise of cloud computing

Self-manage Hardware Self-deploy database DB as a Service (DBaaS)

Managed by 

customer

Managed by 

provider

On-premises



Databases moving to the cloud
Transactional DB Analytical DB



New challenges in cloud databases

• High availability
• Low cost
• Elasticity
• Autoscaling

New Requirements

• Geo-distribution

Higher design complexity

Solution: Modularity in distributed system design



Modular distributed system design

Conventional distributed 
system architecture

Data Center Network



Data Center Network

Disaggregated distributed 
system architecture

Data Center Network

Concurrency control

Logging

Storage and Paxos/Raft

Each service is deployed as a separate distributed cluster

Modular distributed system design

Conventional distributed 
system architecture



Disaggregated distributed systems

Advantages
– Scalability: Services can scale 

independently
– Performance and cost: Services can 

be custom optimized (e.g., low cost 
storage service)

– Separation of concerns: Services 
can be independently developed

Disadvantage
– Network can throttle performance

Disaggregated distributed 
system architecture

Data Center Network



2020 – Now: Databases for Large Generative Models

Large language models and ChatGPT

Multi-modal models



Scale of Embeddings - example: OpenAI
• text-embedding-3-small: 1536 dims

• 1536 * 4 bytes = 6 KB
• 6 KB * 1B = 6 TB
• 6 KB * 1T = 6 PB

• text-similarity-davinci-001: 12288 dims
• 12288 * 4 bytes = 49 KB
• 49 KB * 1B = 49 TB
• 49 KB * 1T = 49 PB

Significant memory requirement for processing 
billion/trillion scale vector datasets

2020 – Now: Large generative models



Vector DB
(Domain Knowledge)

User
Query

Top-k documents

Context
LLM

(General Knowledge)

Similarity
Search

Embed

…
Vector DB is in the critical path of LLM applications –

we need them to be performant!

Vector search in LLMs (Retrieval Augmented Generation)



Vector search pyramid



• Fast similarity searches 
and retrieval for high- 
dimensional vectors

• Consistency guarantees, 
multi- tenancy, cloud-
native, CRUD, logging and 
recovery, serverless, etc

Vector databases



2020 – Now: Large generative models

• Training large gen models needs a 
huge dataset
• Data cleaning and curation
• Multi-modal data
• Annotations for post-training



Databases as an evolving research field

Established conferences: 

SIGMOD, VLDB, ICDE, KDD

Emerging fields: 

Data-centric AI, AI for systems, 

security and privacy, data govornance

Databases

Data 
systems

Data 
management
& integration

Knowledge  
discovery & 
data mining



Databases as a startup arena

Yingjun Wu 
PhD from NUS



Course schedule (subject to change)

Date Lecture schedule Tutorial schedule HW/Proj schedule

Jan 17 Introduction /
Jan 24 Relational Databases I. Concepts /
Jan 31 Relational Databases II. Tuning Strategies Lab 1: Relational DB design HW1 out
Feb 07 Modern Databases I. Key-Value and Vector Databases Lab 2: Vector DB design
Feb 14 Modern Databases II. Streaming and Time Series Databases Lab 3: Time series DB design HW1 due
Feb 21 Modern Databases III. Document Databases Lab 4: Relational DB tuning HW2 out
Feb 28 Recess week /
Mar 07 Cloud Databases I: MapReduce and Spark Project presentation: Group I
Mar 14 Cloud Databases II: Data Lakes and Warehouses Project presentation: Group II HW2 due
Mar 21 Query Optimization Project presentation: Group III Final project out
Mar 28 Well-Being Day /
Apr 04 Data Integration TBD
Apr 11 Data Curation for Machine Learning TBD
Apr 18 Final project presentations / Time/location TBD



Course schedule (subject to change)

Date Lecture schedule
Jan 17 Introduction
Jan 24 Relational Databases I. Concepts
Jan 31 Relational Databases II. Tuning Strategies
Feb 07 Modern Databases I. Key-Value and Vector Databases
Feb 14 Modern Databases II. Streaming and Time Series Databases
Feb 21 Modern Databases III. Document Databases
Feb 28 Recess week
Mar 07 Cloud Databases I: MapReduce and Spark
Mar 14 Cloud Databases II: Data Lakes and Warehouses
Mar 21 Query Optimization
Mar 28 Well-Being Day
Apr 04 Data Integration
Apr 11 Data Curation for Machine Learning
Apr 18 Final project presentations

Traditional relational DB → 
Individual DBs categorized 
by data model

Cloud databases & 
optimizations

Data integration & curation

Ultimate goal: data lake for a 
comprehensive application from scratch



A notation for describing data or information consists of:

• Structure of the data

• Operations on the data

• Constraints on the data

Data model



● Relational
● Key/Value
● Graph
● Document (Semi-structured)
● Column-family
● Array/Matrix
● Hierarchical
● Network

Traditional DBMS

No SQL

Machine Learning

Obsolete

Data model



title year length genre

Oldboy 2003 120 mystery

Ponyo 2008 103 anime

Frozen 2013 102 anime

The relational model

• Structure
• Based on tables (relations)
• Looks like an array of structs in C, but this is just one possible 

implementation
• In database systems, tables are not stored as main-memory structures
• and must take into account the need to access relations on disk

Adapted from KAIST EE477 from Steven Whang



title year length genre

Oldboy 2003 120 mystery

Ponyo 2008 103 anime

Frozen 2013 102 anime

The relational model

• Operations
• Relational algebra
• E.g., all the rows where genre is “anime”

• Constraints
• E.g., Genre must be one of a fixed list of values, no two movies can have 

the same title



<Movies>

<Movie title=”Oldboy”>
<Year>2003</Year>

<Length>120</Length>

<Genre>mystery</Genre>
</Movie>

<Movie title=”Ponyo”>
<Year>2008</Year>

…

</Movies>

The semi-structured model

• Structure
• Resembles trees or graphs, rather than tables or arrays
• Represent data by hierarchically nested tagged elements

• Operations
• Involve following path from element to sub-elements

• Constraints
• Involve types of values associated with tags
• E.g., <Length> tag values are integers, each <Movie> 

element must have a <Length>



key value

1000 (oldboy, 2003)

1001 (ponyo, 2008)

1002 (frozen, 2013)

The key-value model

• Structure
• (key, value) pairs
• Key is a string or integer
• Value can be any blob of data

• Operations
• get (key), put(key, value)
• Operations on values not supported

• Constraints
• E.g., key is unique, value is not NULL



Comparison of modeling approaches

• Relational model
• Simple and limited, but reasonably versatile
• Limited, but useful operations
• Efficient access to large data
• A few lines of SQL can do the work of 1000’s of lines of C code
• Preferred in DBMS’s

• Semi-structured model
• More flexible, but slower to query

• Key-value model
• Even more flexible, but cannot query



Popularity changes



Time series data

Retail



Popular time series DBs



DocumentColumnKey/Value Graph

Non-relational data modellings



Document database

{
  "_id": 
ObjectId("6ef8d4b32c9f12b6d4a")
,
  "user_id": "John Watson",
  "age": 45,
  "address": 

{
  “Country: “England”
  “City”: “London”,
  “Street”: “221B Baker 
St.”
},

  “Medical license”: “Active”
}

• Structure
• Polymorphic data models
• Each document contains markup 

that identifies fields and values

• Strengths
• Obvious relationships using 

embedded arrays and documents
• No complex mapping



Popular document DBs



So far, you are (mostly) dealing with OLTP

• OLTP: OnLine Transactional Processing
• Often used to store and manage relevant data to the day-to-day 

operations of a system or company. 
• e.g., ATM transactions, online hotel bookings

• INSERT, UPDATE, DELETE commands
• Handles real-time transactions (response times often in milliseconds)
• ACID properties are often important

• This is where relational databases shine!



Another important topic: OLAP
• OLAP: OnLine Analytical Processing

• Also known as decision support or business intelligence (BI), but now BI has grown to 
include more (e.g., AI)

• A specialization of relational databases that prioritizes the reading and summarizing 
large volumes (TB, PB) of relational data to understand high- level trends and patterns
• e.g., the total sales figures of each type of Honda car over time for each county

• “Read-only” queries

• Contrast this to OLTP
• “Read-write” queries
• Usually touch a small amount of data

• e.g., append a new car sale into the sales table



Another important topic: OLAP

• Usually, OLAP is performed on a separate data warehouse away from the critical path of 
OLTP transactions (a live/transactional database).

• This data warehouse is periodically updated with data from various sources (e.g., once 
an hour or once a day)
• This is through a process of ETL (Extract, Transform, Load)
• Extract useful business that needs to be summarized, transform it (e.g., canonicalize 

values, clean it up), load it in the data warehouse
• By doing it periodically, this data warehouse can become stale



OLAP in data warehouses



Data warehouse vs. data lake

• Data warehouse:
• Structured data (schema-on-write) 
• Expensive for large data volumes 
• Managers and business analysts



Data warehouse vs. data lake

• Data lake:
• Raw data, can be unstructured (schema-on-read)
• Low-cost storage, but no transactions, data quality checks 
• Data scientists and engineers



Data lake + data warehouse = ? 

• Observation #1: People want to execute more than just SQL on data.

• Observation #2: Decoupling data storage from DBMS reduces 
ingest/egress barriers.

• Observation #3: Most data is unstructured / semi-structured.



Data lake + data warehouse = lakehouse 

• Middleware for data lakes that adds support for better schema control / 
versioning with transactional CRUD operations.

 → Store changes in row-oriented log-structured files with indexes.
 → Periodically compact recently added data into read-only columnar files.

• We will not be covering this aspect of these systems in this course.

LAKEHOUSE: A NEW GENERATION OF OPEN PLATFORMS THAT
UNIFY DATA WAREHOUSING AND ADVANCED ANALYTICS
CIDR 2021

https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf


Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query
Translate to RA expression and find 

logically equivalent but more efficient 

plans

Cost-based query optimization: 

estimate cost and select physical 

plan with the smallest cost

Query execution (e.g., run join

algorithms against tuples on disk)

Putting it all together: data systems architecture



πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

Query optimization: select physical plan

• A logical query plan is turned into a physical query plan
• Algorithm for each operator
• Order of execution
• How to access relations



πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

Movies

Query optimization: select physical plan

• A logical query plan is turned into a physical query plan
• Algorithm for each operator
• Order of execution
• How to access relations

(Hash join)

(On the fly)

Physical 
query plan 1

StarsIn

(File scan) (File scan)

(On the fly)



πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

Movies

Query optimization: select physical plan

• A logical query plan is turned into a physical query plan
• Algorithm for each operator
• Order of execution
• How to access relations

(On the fly)

Physical 
query plan 2

(File scan)

(On the fly)

(Nested loop join)

StarsIn

(File scan)



πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

Query optimization: select physical plan

• A logical query plan is turned into a physical query plan
• Algorithm for each operator
• Order of execution
• How to access relations

(On the fly)

Physical 
query plan 3

(Index scan) (File scan)

(On the fly)

(Nested loop join)



Logical Query Plan

P1 P2 Pn...

C1 C2 Cn...

Pick best!

In general, there can be many possible physical plans

Physical Plans

Estimated Cost

Query optimization: select physical plan



πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn

(File scan)

Movies 

(File scan)

(Nested loop join)

(On the fly)

(On the fly)

The best physical plan is translated to actual machine code

Machine Code 

(e.g., C)

Query execution



Query optimization: methodology

• Output: A good physical query plan

• Basic cost-based query optimization algorithm
• Enumerate candidate query plans (logical and physical)
• Compute estimated cost of each plan (e.g., number of I/Os)

• Without executing the plan!
• Choose plan with lowest cost



Query optimization: methodology

• Cost estimation
• Estimate size of results
• Also consider whether output is sorted/intermediate results written to 

disk etc.

• Search space
• Algebraic laws, restricted types of join trees

• Search algorithm
• Example: Selinger algorithm



Query: 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3 ⋈ 𝑅4

Search space

• Logical plan space:
• Several possible structures of the trees
• Each tree can have n! permutations of relations on leaves

• Physical plan space:
• Different implementation (e.g., join algorithm) and scanning of 

intermediate operators for each logical plan



Heuristic for pruning plan space

• Apply predicates as early as possible
• Avoid plans with cartesian products
• (𝑅(𝐴, 𝐵)⋈ 𝑇(𝐶, 𝐷)) ⋈ S(𝐵, 𝐶)

• Consider only left-deep join trees
• Studied extensively in traditional query optimization literature
• Works well with existing join algorithms such as nested-loop and hash join

• e.g., might not need to write tuples to disk if enough memory



• Selinger Algorithm: dynamic programming based
• Based on System R (aka Selinger) style optimizer [1979]
• Consider different logical and physical plans at the same time
• Limited to joins: join reordering algorithm
• Cost of a plan is I/O + CPU

• Exploits “principle of optimality”
• Optimal for “whole” made up from optimal for “parts”

• Consider the search space of left-deep join trees
• Reduces search space but still n! permutations

Search algorithm



Forbes, 2016

Least Enjoyable

5%

10%

4%

3%

57%

21%
60%19%

9%

4%
3%

5%

Most Time-Consuming

Cleaning data: most time-consuming, least enjoyable



Incomplete

Common data problems



Inconsistent

Common data problems



Inaccurate

Sheepdog or mop? Poodle or fried chicken? Fox or dog?

Common data problems



Functional dependencies

Action: Fewer erroneous than correct cells; perform minimum number 
of changes to satisfy all constraints

Adapted from UW Madison CS639 by Theodoros Rekatsinas

Constraints and minimality



External list of addressesMatch ing dependencies

External dictionaries may have limited coverage or not exist 
altogether

Adapted from UW Madison CS639 by Theodoros Rekatsinas

External information



Reason about co-occurrence of 
values across cells in a tuple

Estimate the distribution 
governing each attribute

Again, fails to repair the wrong zip code

Adapted from UW Madison CS639 by Theodoros Rekatsinas

Quantitative statistics



Quantitative statistics

Constraints and minimality External data

Different solutions suggest 
different repairs

Combine everything



M L ≈ Model + Data

Model is gradually commoditized

● Out-of-the-box invocation of ML libraries gives decent
results

● Transformers for “all” tasks

Data is the bottleneck

Sources:
https://www.semafor.com/article/01/27/2023/openai-has-hired-an-army-of-contractors-to-make-basic-coding-obsolete
https://www.datanami.com/2023/01/20/openai-outsourced-data-labeling-to-kenyan-workers-earning-less-than-2-per-hour-time-report/

Data is the bottleneck for ML!

http://www.semafor.com/article/01/27/2023/openai-has-hired-an-army-of-contractors-to-make-basic-coding-obsolete
http://www.datanami.com/2023/01/20/openai-outsourced-data-labeling-to-kenyan-workers-earning-less-than-2-per-hour-time-report/


Final project: putting together everything

• Given the workload and input data, find best strategies
• Which DB for what data?
• How to aggregate results? 
• How to tune and optimize for better performance?

• Benchmark on a standard server



Course TAs

Runze Cai

PhD student @ 
Synteraction Lab

Lingze Zeng

PhD student @ DB 
System Lab

Haichen Huang

PhD student @ HPC-AI 
Lab



Assignments and grading
• Coding/Written assignments (40%)

• 2 individual HWs

• Tutorials (10%)
• 4 labs
• Please bring your laptop

• Mid projects (20%)
• Group of 3 people
• Pick a project in Modern Database I, II, III
• Presentation, writeup & QA in tutorial sessions

• Final projects (30%)
• Group of 3 people
• Release late March
• Presentation, writeup, QA & standard benchmarks



Communications
• Office hour: By appointment

• Instructor email: luyao@comp.nus.edu.sg
• TA email: lingze@comp.nus.edu.sg

             runze.cai@u.nus.edu

                    hai2000@comp.nus.edu.sg

• Canvas
• Only for notifications, gradebooks and homework submissions
• Course content on my webpage

mailto:luyao@comp.nus.edu.sg
mailto:lingze@comp.nus.edu.sg
mailto:runze.cai@u.nus.edu
mailto:hai2000@comp.nus.edu.sg


Disclaimers

• Very short time for revamping this course. Only a few 

similar offerings around the world. 

• Industry & open-source world evolving ultra fast.

• The materials and outline will likely adjust throughout the 

semester. 

• There will be bugs in the content. 

 



Credits
• Andy Pavlo, Carnegie Mellon University 

• Kexin Rong, Georgia Institution of Technology

• Xiangyao Yu, University of Wisconsin-Madison 
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