CS4221 Cloud Databases III. OLAP optimizations

Yao LU 2024 Semester 2

National University of Singapore School of Computing

Today's agenda

- Current practice in distributed OLAP
- Cost-intelligent data analytics in the cloud

The trend: disaggregated OLAP

- One recent trend of the last decade is the breakout of OLAP engine sub-systems into standalone open-source components.
 - This is typically done by organizations <u>not</u> in the business of selling DBMS software.

• Examples:

- System Catalogs
- Query Optimizers
- File Format / Access Libraries
- Execution Engines

Recall: Snowflake architecture

System catalogs

- A DBMS tracks a database's schema (table, columns) and data files in its catalog.
 - If the DBMS is on the data ingestion path, it can maintain the catalog incrementally.
 - If an external process adds data files, it also needs to update the catalog so that the DBMS is aware of them.
- Notable implementations:
 - <u>HCatalog</u>
 - Google Data Catalog
 - Amazon Glue Data Catalog

Execution engines

- Standalone libraries for executing vectorized query operators on columnar data.
 - Input is a DAG of physical operators.
 - Require external scheduling and orchestration.
- Notable implementations:
 - <u>Velox</u>
 - DataFusion
 - Intel OAP

Query optimizers

- Extendible search engine framework for heuristic- and cost-based query optimization.
 - Applications provide transformation rules and cost estimates.
 - Framework returns either a logical or physical query plan.
- This is the hardest part to build in any DBMS.
- Notable implementations:
 - Greenplum Orca
 - Apache Calcite

Query optimization for distributed execution

- All the optimizations that we talked about before are still applicable in a distributed environment.
 - Predicate Pushdown
 - Projection Pushdown
 - Optimal Join Orderings
- Distributed query optimization is even harder because it must consider the physical location of data and network transfer costs.
 - Using broadcast join vs. repartition join?
 - Considering the impact of data partitioning.

Distributed query execution

- Executing an OLAP query in a distributed DBMS is roughly the same as on a single-node DBMS.
 - A query plan is represented as a tree of physical operators.
- For each operator, the DBMS considers where input is coming from and where to send output, like parallel execution in a single node.

Unique challenges

- Data is partitioned across nodes, so a worker thread does not have access to all data for free: accessing data requires network communication.
- Data is partitioned across nodes, so we need to consider leveraging the distributed partitioning to accelerate query executions.
- A query can run for a long time -> how to continue query processing under node failures.

Parallel execution for joins

Parallel execution for joins

Distributed join algorithms

- The efficiency of a distributed join depends on the target tables' partitioning schemes.
- One approach is to put entire tables on a single node and then perform the join.
 - This approach loses the parallelism of a distributed DBMS.
 - Costly data transfer over the network.

Distributed join algorithms

- To join tables R and S, the DBMS needs to get the proper tuples on the same node.
- Once the data is at the node, the DBMS then executes the same join algorithms that we discussed earlier in the semester.
 - Need to produce the correct answer as if all the data is located in a single node system.

- One table is replicated at every node. Each node joins its local data in parallel and then sends its results to a coordinating node.
 - Which tables to replicate?
 - What is the cost?

SELECT	*	FROM	R	JOIN	S	
ON	R.	id =	S	.id		

- Tables are partitioned on the join attribute using the same partitioning function.
- Each node performs the join on local data and then sends it to a coordinator node for coalescing.

SELECT * FROM R JOIN S
ON R.id = S.id

• Both tables are partitioned on different keys. If one of the tables is small, then the DBMS "broadcasts" that table to all nodes.

SELECT * FROM R JOIN S
ON R.id = S.id

• Known as "broadcast join".

- Both tables are partitioned on different keys. The DBMS copies/re-partitions the tables on the fly across nodes.
 - This repartitioned data is generally deleted when the query is done.
- SELECT * FROM R JOIN S ON R.id = S.id

Query plan fragments

Approach #1: Physical Operators

- Generate a single query plan and then break it up into partition-specific fragments.
- Most systems implement this approach.

Approach #2: SQL

- Rewrite the original query into partition-specific queries.
- Allows for local optimization at each node.

Query plan fragments

Query fault tolerance

- Most shared-nothing distributed OLAP DBMSs are designed to assume that nodes do not fail during query execution.
 - If one node fails during query execution, then the whole query fails.
- The DBMS could take a snapshot of the intermediate results for a query during execution to allow it to recover if nodes fail.

Query fault tolerance

MapReduce

- MapReduce is a data processing paradigm proposed by Google.
- Motivation
 - There is a large volume of raw (unstructured) data to process
 - crawled documents, web request logs, etc.
 - They want to build a system that can use hundreds to thousands of machines.
 - The system needs to be easy to program so that developers do not need to worry about how to parallelize the data processing.
 - Also, the system needs to tolerate node failures when executing a query.

- MapReduce is inspired by the map and reduce primitives of Lisp and many other functional languages.
- Map function:
 - applying the map function to each input record to compute a set of intermediate key/value pairs.
- Reduce function:
 - apply a reduce operation to all the values that share the same key to combine the derived data for the same key together.

MapReduce

- Developers only need to define the map and reduce functions:
 - map $(k1,v1) \rightarrow list(k2,v2)$
 - reduce (k2, list(v2))) $\rightarrow list(v3)$
- The system will handle
 - Data distribution
 - Parallel execution
 - Fault tolerance

Example

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

```
reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```


- A master process will manage the execution of mappers and reducers
 - Scheduling
 - Managing metadata: where is the output of the mapper
 - Fault tolerance

- Map Phase:
 - Input data is partitioned into M splits.
 - Each split is 64 MB 256 MB.
 - Each map function will process one split and map functions are spread over multiple machines.
 - The output of a map function is automatically partitioned based on the reduce key (k2) and stored on the local disk.

- Reduce Phase:
 - A reducer will copy a partition of data from each mapper.
 - After it gets the partitions from all mappers, it sorts the data by the reduce key k2 to generate a list of (k2, list(v2)).
 - The reduce function is called for each (k2, list(v2)).

Parallel execution of aggregation

- MapReduce is very similar to the parallel execution of aggregation
 - The difference is that both map/reduce are UDFs, providing the flexibility of processing raw (unstructured) data.

Fault tolerance

- The master process pings every worker periodically to detect worker failures.
- Any map tasks executed by a failed worker are re-executed
 - This is because the local disk for the failed worker is not inaccessible.
- Any reduce tasks in progress are re-executed
- Completed reduce tasks do not need to be executed
 - The output of a reducer is on a distributed file system.

Data locality

- The input data is stored in a distributed file system
 - Each split is replicated (typically 3 copies)
- It is preferable to schedule a mapper to a node that has a copy it needs to process.
- If not, schedule the mapper closer to that copy
 - Within a rack or sharing a switch
- This is to reduce network bandwidth usage.

- With a large number of mappers and reducers, there will be some of them executing very slowly, called stragglers
 - Scheduling problems
 - Slow/bad local disks
- Solution: backup tasks
 - The master process will execute the same task on multiple workers.
 - If one of them finishes, the task is complete.

Data file formats

- Most DBMSs use a proprietary on-disk binary file format for their databases.
- The only way to share data between systems is to convert data into a common text-based format
 - Examples: CSV, JSON, XML
- There are new open-source binary file formats that make it easier to access data across systems.

Data file formats

Apache Parquet

• Compressed columnar storage from Cloudera/Twitter

Apache ORC

• Compressed columnar storage from Apache Hive.

Apache CarbonData

• Compressed columnar storage with indexes from Huawei.

Apache Iceberg

• Flexible data format that supports schema evolution from Netflix.

HDF5

• Multi-dimensional arrays for scientific workloads.

Apache Arrow

 In-memory compressed columnar storage from Pandas/Dremio.
Recall: Parquet

- Apache Parquet is an open-source, column-oriented data file format.
- It provides high-performance compression and encoding schemes to handle complex data in bulk.
- A parquet file consists of one or more row groups.
 - A row group is a partition of rows and includes a column chunk for each column in the dataset.
 - A column chunk is guaranteed to be contiguous in the file and divided up into pages.
 - A page is conceptually an indivisible unit (in terms of compression and encoding).
 - There can be multiple page types that are interleaved in a column chunk.

Parquet file format

- There are N columns in this table, split into M row groups.
- The file metadata contains the locations of all the column chunk start locations.
- File metadata is written after the data to allow for single-pass writing.
- Readers first read the file metadata to find all the column chunks they are interested in.
- The column chunks should then be read sequentially.

```
4-byte magic number "PAR1"
<Column 1 Chunk 1>
<Column 2 Chunk 1>
. . .
<Column N Chunk 1>
<Column 1 Chunk 2>
<Column 2 Chunk 2>
. . .
<Column N Chunk 2>
. . .
<Column 1 Chunk M>
<Column 2 Chunk M>
. . .
<Column N Chunk M>
File Metadata
4-byte length in bytes of file metadata (little endian)
4-byte magic number "PAR1"
```

File metadata

Today's agenda

- Current practice in distributed OLAP
- Cost-intelligent data analytics in the cloud

Recall cloud databases

Database optimization in the cloud era

Resource Pool

Resource Pool

Resource Pool

Cost control is still difficult

Creating as 🛋 ACCOUNTADMIN	
Name	Size ⑦
technicallyWarehouse	X-Large 16 credits/hour
Comment (optional)	X-Small 1 credit/hour
	Small 2 credits/hour
	Medium 4 credits/hour
Advanced Warehouse Options ∧	Large 8 credits/hour
	✓ X-Large 16 credits/hour
Auto Resume	2X-Large 32 credits/hour
Auto Suspend	3X-Large 64 credits/hour
Suspend After (min)	4X-Large 128 credits/hour

→ Users tend to over-provision

→ Fixed cluster size over the entire workload

Cost control is still difficult

New W	/arehouse
Creating as 🕻	ACCOUNTADMIN
Name	Size ⑦
technicallyWarehouse	X-Large 16 credits/hour
Comment (optional)	X-Small 1 credit/hour
	Small 2 credits/hour
	Medium 4 credits/hour
Advanced Warehouse Options ∧ Auto Resume	Large 8 credits/hour
	✓ X-Large 16 credits/hour
	2X-Large 32 credits/hour
Auto Suspend	3X-Large 64 credits/hour
Suspand After (min)	4X-Large 128 credits/hour
Suspend Arter (mm)	

- → Users tend to over-provision
- → Fixed cluster size over the entire workload

Resource Waste!

Cost control is still difficult

New Warehouse

Creating as 🛓 ACCOUNTADMIN

Name	Size ⑦
technicallyWarehouse	X-Large 16 credits/hour
Comment (optional)	X-Small 1 credit/hour
	Small 2 credits/hour
	Medium 4 credits/hour
Advanced Warehouse Options ∧ Auto Resume	Large 8 credits/hour
	✓ X-Large 16 credits/hour
	2X-Large 32 credits/hour
Auto Suspend	3X-Large 64 credits/hour
Suspend After (min)	4X-Large 128 credits/hour

Cancel

Cost intelligence

The system's ability to **self-adapt** to stay at the **Pareto Frontier** in the performance- cost trade-off under different workloads and user constraints.

Cost Efficiency

An Idea UI

Build Indexes (/ Build Materialized Views Re-partition Data Re-train a Learned Module DBA **\$\$\$**

An Idea UI

Workload i solution Time: 10s -i 10min Cost: \$2 -i \$0.1

Base system architecture

Automatic resource deployment

Automatic resource deployment

Cost-oriented database auto-tuning

Build Indexes

Build Materialized Views

Re-partition Data

Re-train a Learned Module

Database tuning under fixed resources

- → Speeds up a subset of queries
- → MV update slows down writes

Towards cost intelligence

Al-enhanced system components

• QO hint recommendation on workload

Hint set 1

Hint set 2

Hint set 3

Bao

Optimizer

uery

0

- Build a model for query hints
- SIGMOD best paper award

SQL

Parser

Al-enhanced system components

Query optimization & cardinality estimation

SELECT * FROM A,B,C ON A.t = B.t = C.t WHERE A.a=X and B.b=Y and C.c=Z

Cheaper if the first join has fewer <u>output rows</u> (cardinality).

- Fast & accurate cardinality estimation is essential:
 - A wrong plan may result in1000x performance regression.
- Cardinality estimation: a tradeoff between costs & accuracy:
 - Actual execution / multi-dim histograms / samples expensive.
 - Production systems: column-wise stats less accurate.

ML-based cardinality estimation

- Recent ML-enhanced cardinality estimation solutions are instance-optimized.
 - Train a model per workload: MSCN [CIDR 18], Learned Models [VLDB 19, 20].
 - Costly to label & to train models. Dataset/workload changes \rightarrow retrain.

- Useful cardinality estimation:
 - Small building latency.
 - Adapting to changes quickly.

- μ s latency per cardinality estimate.
- High accuracy.

Pretrained models structured tables

Adapting to changes quickly.

• High accuracy.

Yao Lu, Srikanth Kandula, Arnd Christian Konig, Surajit Chaudhuri. Pre-training Summarization Models of Structured Datasets for Cardinality Estimation. VLDB 2022.

Frequency distribution & correlation patterns in tables

cardinality = 20

- Images and text have common patterns.
- Accurate cardinality estimation depends on:
 - Multi-dim frequency distribution & correlation patterns (not string semantics).
- Example: [Weather Col₄, Weather Col₅]

- Pretrained on 10Ks of relations from UCI ML repo.
 - Similar/better accuracy @ small storage budget.
 - 1-2 orders of magnitude faster to build. Per estimate in μ s.
 - Better cardinality estimation = end-to-end performance gains.

Yao Lu, Srikanth Kandula, Arnd Christian Konig, Surajit Chaudhuri. Pre-training Summarization Models of Structured Datasets for Cardinality Estimation. VLDB 2022.
Today's agenda

- Current practice in distributed OLAP
- Cost-intelligent data analytics in the cloud

Credits

- Huanchen Zhang, Tsinghua
- Andy Pavlo, CMU