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Today’s agenda

* Current practice in distributed OLAP

* Cost-intelligent data analytics in the cloud



The trend: disaggregated OLAP

* One recent trend of the last decade is the breakout of OLAP
engine sub-systems into standalone open-source components.

* Thisis typically done by organizations not in the business of selling DBMS
software.

* Examples:
* System Catalogs
* Query Optimizers
* File Format/ Access Libraries
* Execution Engines
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System catalogs

* ADBMS tracks a database's schema (table, columns) and data

files in its catalog.
* |fthe DBMS is on the data ingestion path, it can maintain the catalog
incrementally.
* |f an external process adds data files, it also needs to update the catalog
so that the DBMS is aware of them.

* Notable implementations:

 HCatalog
* Google Data Catalog
* Amazon Glue Data Catalog



https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html

Execution engines

* Standalone libraries for executing vectorized query operators on
columnar data.
* Inputis a DAG of physical operators.
* Require external scheduling and orchestration.

* Notable implementations:
* Velox

e DataFusion
* Intel OAP



https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/

Query optimizers

* Extendible search engine framework for heuristic- and cost-based
query optimization.
* Applications provide transformation rules and cost estimates.
* Framework returns either a logical or physical query plan.

* This is the hardest part to build in any DBMS.

* Notable implementations:
 Greenplum Orca
 Apache Calcite



https://github.com/greenplum-db/gporca
https://calcite.apache.org/

Query optimization for distributed execution

* All the optimizations that we talked about before are still
applicable in a distributed environment.
* Predicate Pushdown
* Projection Pushdown
* Optimal Join Orderings

* Distributed query optimization is even harder because it must
consider the physical location of data and network transfer costs.
* Using broadcast join vs. repartition join?
* Considering the impact of data partitioning.



Distributed query execution

* Executing an OLAP query in a distributed DBMS is roughly the
same as on a single-node DBMS.

* Aquery planisrepresented as a tree of physical operators.

* For each operator, the DBMS considers where input is coming
from and where to send output, like parallel execution in a single
node.



Unique challenges

* Data is partitioned across nodes, so a worker thread does not
have access to all data for free: accessing data requires network
communication.

* Data is partitioned across nodes, so we need to consider
leveraging the distributed partitioning to accelerate query
executions.

* Aquery can run for a long time -> how to continue query
processing under node failures.



Parallel execution for joins

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.1id
WHERE A.value < 99
AND B.value > 100
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Parallel execution for joins

FROM A JOIN B /
ON A.id = B.id \M
WHERE A.value < 99 N
AND B.value > 100 ¢ 1 i B
U it

| |
T Tt
: }
o) o)
3 :
B B

1 2

o O

non
Q Q
/0' 0'\ A1 A2
A B a O




Distributed join algorithms

* The efficiency of a distributed join depends on the target tables'
partitioning schemes.

* One approach is to put entire tables on a single node and then
perform the join.
* This approach loses the parallelism of a distributed DBMS.
* Costly data transfer over the network.



Distributed join algorithms

* To jointables Rand S, the DBMS needs to get the proper tuples on
the same node.

* Once the data is at the node, the DBMS then executes the same
join algorithms that we discussed earlier in the semester.

* Need to produce the correct answer as if all the data is located in a single
node system.



Scenario #1

* One table is replicated at every node.

Each node joins its local data in SELECT * FROM R JOIN S
parallel and then sends its results to a ON R.id = S.id

coordinating node.
* Which tables to replicate?
* What is the cost?

» S

id:101-200

id:1-100

Replicated Replicated




Scenario #2

* Tables are partitioned on the join
attribute using the same partitioning
function.

* Each node performs the join on local

SELECT * FROM R JOIN S
ON R.1d = S.1d

data and then sends it to a coordinator

node for coalescing.
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id:101-200




Scenario #3

* Both tables are partitioned on different

keys. If one of the tables is small, then SELECT * FROM R JOIN S
the DBMS "broadcasts" that table to ON R.id = S.id
all nodes.

* Known as “broadcast join”.

id:1-100 id:101-200

val:1-50 val:51-100




Scenario #4

* Both tables are partitioned on different keys.
The DBMS copies/re-partitions the tables on
the fly across nodes.

* This repartitioned data is generally deleted when
the query is done.

* Known as “repartition join”

SELECT * FROM R JOIN S
ON R.1d = S.1d

id:1-100_|| [ETRRe:-. .~ [YERRY |Lid:101-200
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Query plan fragments

Approach #1: Physical Operators

* Generate a single query plan and then break it up into partition-specific
fragments.

* Most systems implement this approach.

Approach #2: SQL

* Rewrite the original query into partition-specific queries.
* Allows for local optimization at each node.



Query plan fragments

(..
Union the output of each
join to produce final
result.
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\ELECT * FROM R JOIN S
ON R.1d = S.1d

|

SELECT * FROM R JOIN S
ON R.id = S.1id
WHERE R.id BETWEEN 1 AND 100

SELECT * FROM R JOIN S
ON R.id = S.1id
WHERE R.id BETWEEN 101 AND 200

SELECT * FROM R JOIN S
ON R.id = S.1id
WHERE R.1id BETWEEN 201 AND 300
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Query fault tolerance

* Most shared-nothing distributed OLAP DBMSs are designed to
assume that nodes do not fail during query execution.

* |f one node fails during query execution, then the whole query fails.

* The DBMS could take a snapshot of the intermediate results for a
query during execution to allow it to recover if nodes fail.



Query fault tolerance

SELECT * FROM R JOIN S
ON R.id = S.1id

Application
Server




MapReduce

* MapReduce is a data processing paradigm proposed by Google.

Motivation
* Thereis a large volume of raw (unstructured) data to process
* crawled documents, web request logs, etc.

* They want to build a system that can use hundreds to thousands of
machines.

* The system needs to be easy to program so that developers do not need
to worry about how to parallelize the data processing.

* Also, the system needs to tolerate node failures when executing a query.



MapReduce

* MapReduce is inspired by the map and reduce primitives of Lisp
and many other functional languages.

* Map function:

* applying the map function to each input record to compute a set of
intermediate key/value pairs.

e Reduce function:

* apply areduce operation to all the values that share the same key to
combine the derived data for the same key together.



MapReduce

* Developers only need to define the map and reduce functions:
* map (k1,v1) > list(k2,v2)
* reduce (k2, list(v2))) - list(v3)

* The system will handle
* Data distribution
* Parallel execution
* Faulttolerance



Example

map (String key, String value):

// key: document name

// value: document contents

for each word w in value:
EmitIntermediate(w, "1");

reduce (String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:
result += Parselnt (v);

Emit (AsString (result));



Execution Overview
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Execution Overview

* A master process will manage the execution of mappers and
reducers
* Scheduling
* Managing metadata: where is the output of the mapper
* Faulttolerance



Execution Overview

* Map Phase:
* Input data is partitioned into M splits.
* Each splitis 64 MB - 256 MB.

* Each map function will process one split and map functions are spread
over multiple machines.

* The output of a map function is automatically partitioned based on the
reduce key (k2) and stored on the local disk.



Execution Overview

* Reduce Phase:
* Areducer will copy a partition of data from each mapper.

* After it gets the partitions from all mappers, it sorts the data by the reduce
key k2 to generate a list of (k2, list(v2)).

* The reduce function is called for each (k2, list(v2)).



Parallel execution of aggregation

* MapReduce is very similar to the parallel execution of aggregation

* The difference is that both map/reduce are UDFs, providing the flexibility
of processing raw (unstructured) data.

Pages Partitions

Hash(Key) =
1,1,3,6 _.a Koy




Fault tolerance

* The master process pings every worker periodically to detect
worker failures.

* Any map tasks executed by a failed worker are re-executed
* Thisis because the local disk for the failed worker is not inaccessible.

* Any reduce tasks in progress are re-executed

* Completed reduce tasks do not need to be executed
* The output of areduceris on a distributed file system.



Data locality

* The input data is stored in a distributed file system
* Each splitis replicated (typically 3 copies)

* |tis preferable to schedule a mapper to a node that has a copy it
needs to process.

* |If not, schedule the mapper closer to that copy
* Within a rack or sharing a switch

* This is to reduce network bandwidth usage.



Stragglers

* With a large number of mappers and reducers, there will be some
of them executing very slowly, called stragglers

* Scheduling problems
 Slow/bad local disks

* Solution: backup tasks
* The master process will execute the same task on multiple workers.
* If one of them finishes, the task is complete.



Data file formats

* Most DBMSs use a proprietary on-disk binary file format for their
databases.

* The only way to share data between systems is to convert data
Into a common text-based format
* Examples: CSV, JSON, XML

* There are new open-source binary file formats that make it easier
to access data across systems.



Data file formats

Apache Parquet

* Compressed columnar storage
from Cloudera/Twitter

Apache ORC

* Compressed columnar storage
from Apache Hive.

Apache CarbonData

* Compressed columnar storage
with indexes from Huawei.

Apache Iceberg

* Flexible data format that supports
schema evolution from Netflix.

HDF5

 Multi-dimensional arrays for
scientific workloads.

Apache Arrow

* In-memory compressed columnar
storage from Pandas/Dremio.


https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

Recall: Parquet

* Apache Parquetis an open-source, column-oriented data file format.

* [t provides high-performance compression and encoding schemes to
handle complex data in bulk.

* A parquet file consists of one or more row groups.

* Arow group is a partition of rows and includes a column chunk for each column
in the dataset.

* Acolumn chunk is guaranteed to be contiguous in the file and divided up into
pages.

* A pageis conceptually an indivisible unit (in terms of compression and encoding).
* There can be multiple page types that are interleaved in a column chunk.



Parquet file format

* There are N columns in this table, split
into M row groups.

 The file metadata contains the
locations of all the column chunk start
locations.

* File metadata is written after the data
to allow for single-pass writing.

 Readers first read the file metadata to
find all the column chunks they are
interested in.

e The column chunks should then be
read sequentially.

4-byte magic number "PAR1"
<Column 1 Chunk 1>
<Column 2 Chunk 1>

<Column N Chunk 1>
<Column 1 Chunk 2>
<Column 2 Chunk 2>

<Column N Chunk 2>

<Column 1 Chunk M>
<Column 2 Chunk M>

<Column N Chunk M>

File Metadata

4-byte length in bytes of file metadata (little endian)
4-byte magic number "PAR1"



File metadata




Today’s agenda

* Current practice in distributed OLAP

* Cost-intelligent data analytics in the cloud



Recall cloud databases
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Database optimization in the cloud era

User Profit Utility $ Cost
I U(p) -C Fix, Large
Traditional p1 Counk T Ce
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————————
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Cost from different perspectives

User-Observable Cost

Provider-Observable Cost

Resource Pool



Cost from different perspectives

Provider-Observable Cost

Resource Pool



Cost from different perspectives

Provider-Observable Cost

Resource Pool



Cost from different perspectives

Provider-Observable Cost

[ Multi-Tenancy Techniques ]

Resource Pool



Cost from different perspectives

Provider-Observable Cost

[ Multi-Tenancy Techniques ]

Resource Pool



Cost control is still difficult

New Warehouse
Creating as (2) ACCOUNTADMIN

=» Users tend to over-provision

Name Size ® ] ]
technicallyWarehouse [ X-Large 16 credits/hour A ] 9 leed CI U Ster S | Ze Over th e
Comment (ont | entire workload
omment (optional) X-Small 1 credit/hour

Small 2 credits/hour
Medium 4 credits/hour
Large 8 credits/hour

Advanced Warehouse Options
v X-Large 16 credits/hour

Auto Resume A
2X-Large 32 credits/hour
Auto Suspend 3X-Large 64 credits/hour

4X-Large 128 credits/hour
Suspend After (min)

Cancel Create Warehouse



Cost control is still difficult

iwein -» Users tend to over-provision
Name Size ® . .
technicallyWarehouse [ X-Large 16 credits/hour v] 9 leed CIUSter SIZG Over the
comiriett [opt . entire workload
omment (optional) X-Small 1 credit/hour

Small 2 credits/hour

Medium 4 credits/hour Res O u rC e Wa.Ste !

Large 8 credits/hour
Advanced Warehouse Options

v X-Large 16 credits/hour
Auto Resume A
2X-Large 32 credits/hour
Auto Suspend 3X-Large 64 credits/hour

4X-Large 128 credits/hour
Suspend After (min)

Cancel Create Warehouse



Cost control is still difficult

New Warehouse

@\ Build Indexes
@ Build Materialized Views

Creating as (2) ACCOUNTADMIN

Name Size ®
technicallyWarehouse { X-Large 16 credits/hour v ] m -
(' Re-partition Data
Comment (optional) X-Small 1 credit/hour

@ Re-train a Learned Module

Small 2 credits/hour
Medium 4 credits/hour

Large 8 credits/hour

DBA

Advanced Warehouse Options
v X-Large 16 credits/hour

Auto Resume ;
2X-Large 32 credits/hour

Auto Suspend 3X-Large 64 credits/hour

4X-Large 128 credits/hour
Suspend After (min)

Cancel Create Warehouse



Cost intelligence

=| The system’s ability to self-adapt to stay at the Pareto Frontier in the
performance- cost trade-off under different workloads and user constraints.

Pareto Frontier

Performance

Cost Efficiency
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Base system architecture
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Automatic resource deployment

Workload a

. BT | :
Config 1 X 100 min

Config 2 °°' X 1min

100 servers

S\
Same $ Cost 100x performance boost! H



Automatic resource deployment

Workload a
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Config 1 X 100 min
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100 servers
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System architecture
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System architecture
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System architecture
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Cost-oriented database auto-tuning

@ Build Indexes

wu

IQ\ Build Materialized Views

((®) Re-partition Data Total Benefit: $$ $

IQ\ Re-train a Learned Module °
Total Cost: $




Database tuning under fixed resources

+ =» Speeds up a subset of queries
=» MV update slows down writes

Read Perf: -|-

Write Perf; o \ Resource Contention



System architecture
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System architecture

’—___N
&~

—_—

\.

oo = [eonecive opumzer | — e
. . . . . _ ) . g
Result «— Bi-Objective Optimizer =\ predictor 1 What-If Service Proposal

'y

DOP

Cost-Aware Monitor

Plan &

!

Metadata
Service

!

Update

1o
) ) . ol
C—— Statistics Service @

Exec History ‘

ANEE.
Compure

Storage S~ N

i1

{:P

TABLE

JSON

(sv

A
Workload Summaries

- weighted join graphs

File/Column Access Stats

o o~ il (e s s e




System architecture
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System architecture
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Towards cost intelligence

‘_E! Cost is as important as performance in cloud-native databases

Pareto Frontier Time: 10s ‘U 10min

: 2 —)— A
Cost: $ U $0 Total Benefit;: $$$

Performance

Total Cost: $

Cost Efficiency




* Build a model for query hints

 SIGMOD best paper award

* QO hintrecommendation on workload

Al-enhanced system components

Bao: Making Learned Query Optimization Practical

Ryan Marcus

Parimarjan Negi

Hongzi Mao
MIT

hongzi@csail mit.edu

Tim Kraska
MIT
kraska(@csail.mit.edu

SQL

MIT & Intel Labs MIT
ryanmarcus@csail mit.edu pnegi@csail.mit.edu
Nesime Tatbul Mohammad Alizadeh
MIT & Intel Labs MIT
tatbul@csail. mit.edu alizadeh@csail.mit.edu
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Recent efforts applying machine learning techniques to query opti-
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(1) Long training time. Most proposed machine learning tech-
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Al-enhanced system components

* Index recommendation on workload

e \Workload com pressio N ML-Powered Index Tuning: An Overview of Recent
Progress and Open Challenges

* Workload forecasting .
Tarigue Siddiqui Wentao Wu
° Reducing what-if calls ) Microsqoft Research
. {tasidd, wentwu}@microsoft.com
* Performance regression e SRR

| ABSTRACT / Index Tuner \ Database )
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Ml-based Performance r, 7] Chery
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RegrESS.On Predictor 5 Bes‘f;}‘]{ﬂ Configuration | (@0 (E’;()t::::dr)
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Figure 3: ML-powered techniques (shaded) for improving index tuning.




Query optimization & cardinality estimation

WHERE A.a=X and Bb=Y and C.c=Z

» Fast & accurate cardinality estimation is essential:

* A wrong plan may result in1000x performance regression.

SELECT * FROM A,B,C Two plans: , AN N
ONAt=Bt=Ct >l =jomn A B C A B C
Cost =120 Cost =17

Cheaper if the first join has fewer output rows (cardinality).

Accuracy
A Idea Samphng Actual.
+ execution
1D stats

» Cardinality estimation: a tradeoff between costs & accuracy:

« Actual execution / multi-dim histograms / samples — expensive.

* Production systems: column-wise stats — less accurate.

Costs



ML-based cardinality estimation

* Recent ML-enhanced cardinality estimation solutions are instance-optimized.
* Train a model per workload: MSCN [CIDR 18], Learned Models [VLDB 19, 20].

* Costly to label & to train models. Dataset/workload changes — retrain.

Query predicates Cardinality
Training Col, >5 & Col, < 10 16— SQL
workload | Col, > 7 & Col, < 10 14 — Server
Test Col, > 6 & Col, < 10 17
workload

 Useful cardinality estimation:

* Small building latency:. * us latency per cardinality estimate.

» Adapting to changes quickly. « High accuracy.




Pretrained models structured tables

Building/encoding stage

New table w/

e

arbitrary schema

Table
encoding
model

~
7

Querying/decoding stage

Embedding
(summary)

\4

Card. est.
model

—> Prediction

0

Query
predicate

Use the models off-the-shelf as a part of the software for cardinality
estimation.

v Small building latency:.

= Adapting to changes quickly.

v' us latency per cardinality estimate.

High accuracy.

Yao Lu, Srikanth Kandula, Arnd Christian Konig, Surajit Chaudhuri. Pre-training Summarization Models of Structured Datasets for Cardinality Estimation. VLDB 2022.



Frequency distribution & correlation patterns in tables

* Images and text have common patterns. ,ﬁ n 5Ty m
il
 Accurate cardinality estimation depends on: . ‘a ﬁ ,E -
e Multi-dim frequency distribution & correlation patterns g @ . ’ ﬁ
(not string semantics). ! VY 3l
« Example: [Weather Col,, Weather Col,] o 03%
4 5 HIGG§_7[16 17] sgemm (6,13] JAdut[o3)  Covtype-[2,14]
|$ Embedding ||||| '-’-," )
|$ cardinality = 20 1] bt v, |m-A
C014 < 10 & COIS € [5, 10] Predicate Covtype [0 9] HIGGS-[9,23] Weather-[1,2] Covtype-[5,7] =
e Pretrained on 10Ks of relations from UCI ML repo. | e
Weather-[4,5] HIGGS-(26,27)  GasCO-[6,14] i Power-[0,3]
« Similar/better accuracy @ small storage budget. o -
* 1-2 orders of magnitude faster to build. Per estimate in us. Fa A i .' //

* Better cardinality estimation = end-to-end performance gains.

72
Yao Lu, Srikanth Kandula, Arnd Christian Konig, Surajit Chaudhuri. Pre-training Summarization Models of Structured Datasets for Cardinality Estimation. VLDB 2022.
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* Current practice in distributed OLAP

* Cost-intelligent data analytics in the cloud
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