
CS4221
Cloud Databases III. OLAP optimizations

Yao LU
2024 Semester 2

National University of Singapore
School of Computing



Today’s agenda

• Current practice in distributed OLAP

• Cost-intelligent data analytics in the cloud



The trend: disaggregated OLAP

• One recent trend of the last decade is the breakout of OLAP 
engine sub-systems into standalone open-source components.
• This is typically done by organizations not in the business of selling DBMS 

software.

• Examples:
• System Catalogs
• Query Optimizers
• File Format / Access Libraries
• Execution Engines



Recall: Snowflake architecture
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System catalogs

• A DBMS tracks a database's schema (table, columns) and data 
files in its catalog.
• If the DBMS is on the data ingestion path, it can maintain the catalog 

incrementally.
• If an external process adds data files, it also needs to update the catalog 

so that the DBMS is aware of them.

• Notable implementations:
• HCatalog
• Google Data Catalog
• Amazon Glue Data Catalog

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html


Execution engines

• Standalone libraries for executing vectorized query operators on 
columnar data.
• Input is a DAG of physical operators.
• Require external scheduling and orchestration.

• Notable implementations:
• Velox
• DataFusion
• Intel OAP

https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/


Query optimizers

• Extendible search engine framework for heuristic- and cost-based 
query optimization.
• Applications provide transformation rules and cost estimates.
• Framework returns either a logical or physical query plan.

• This is the hardest part to build in any DBMS.

• Notable implementations:
• Greenplum Orca
• Apache Calcite

https://github.com/greenplum-db/gporca
https://calcite.apache.org/


Query optimization for distributed execution

• All the optimizations that we talked about before are still 
applicable in a distributed environment.
• Predicate Pushdown
• Projection Pushdown
• Optimal Join Orderings

• Distributed query optimization is even harder because it must 
consider the physical location of data and network transfer costs.
• Using broadcast join vs. repartition join?
• Considering the impact of data partitioning.



Distributed query execution
• Executing an OLAP query in a distributed DBMS is roughly the 

same as on a single-node DBMS.
• A query plan is represented as a tree of physical operators.

• For each operator, the DBMS considers where input is coming 
from and where to send output, like parallel execution in a single 
node.



Unique challenges
• Data is partitioned across nodes, so a worker thread does not 

have access to all data for free: accessing data requires network 
communication.

• Data is partitioned across nodes, so we need to consider 
leveraging the distributed partitioning to accelerate query 
executions.

• A query can run for a long time -> how to continue query 
processing under node failures.



Parallel execution for joins
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Parallel execution for joins
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Distributed join algorithms

• The efficiency of a distributed join depends on the target tables' 
partitioning schemes.

• One approach is to put entire tables on a single node and then 
perform the join.
• This approach loses the parallelism of a distributed DBMS.
• Costly data transfer over the network.



Distributed join algorithms

• To join tables R and S, the DBMS needs to get the proper tuples on 
the same node.

• Once the data is at the node, the DBMS then executes the same 
join algorithms that we discussed earlier in the semester.
• Need to produce the correct answer as if all the data is located in a single 

node system.



Scenario #1
• One table is replicated at every node.

Each node joins its local data in 
parallel and then sends its results to a 
coordinating node.
• Which tables to replicate?
• What is the cost?

R{id}

S

id:1-100

Replicated

R{id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
    ON R.id = S.id

P1:R⨝S P2:R⨝S
R⨝S



Scenario #2
• Tables are partitioned on the join 

attribute using the same partitioning 
function.

• Each node performs the join on local 
data and then sends it to a coordinator 
node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

P1:R⨝S P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
    ON R.id = S.id



Scenario #3
• Both tables are partitioned on different 

keys. If one of the tables is small, then 
the DBMS "broadcasts" that table to 
all nodes.
• Known as “broadcast join”.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

P1:R⨝S P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
    ON R.id = S.id



Scenario #4
• Both tables are partitioned on different keys. 

The DBMS copies/re-partitions the tables on 
the fly across nodes. 
• This repartitioned data is generally deleted when 

the query is done.
• Known as “repartition join”

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S P2:R⨝S
R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id



Query plan fragments

Approach #1: Physical Operators
• Generate a single query plan and then break it up into partition-specific 

fragments.
• Most systems implement this approach.

Approach #2: SQL
• Rewrite the original query into partition-specific queries.
• Allows for local optimization at each node.



Query plan fragments

SELECT * FROM R JOIN S
    ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 201 AND 300

Union the output of each 
join to produce final 

result.



Query fault tolerance

• Most shared-nothing distributed OLAP DBMSs are designed to 
assume that nodes do not fail during query execution. 
• If one node fails during query execution, then the whole query fails.

• The DBMS could take a snapshot of the intermediate results for a 
query during execution to allow it to recover if nodes fail.



Query fault tolerance
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MapReduce
• MapReduce is a data processing paradigm proposed by Google.
Motivation 

• There is a large volume of raw (unstructured) data to process
• crawled documents, web request logs, etc.

• They want to build a system that can use hundreds to thousands of 
machines.

• The system needs to be easy to program so that developers do not need 
to worry about how to parallelize the data processing. 

• Also, the system needs to tolerate node failures when executing a query. 



MapReduce

• MapReduce is inspired by the map and reduce primitives of Lisp 
and many other functional languages.

• Map function:
• applying the map function to each input record to compute a set of 

intermediate key/value pairs.

• Reduce function:
• apply a reduce operation to all the values that share the same key to 

combine the derived data for the same key together.



MapReduce

• Developers only need to define the map and reduce functions:
• map (k1,v1) → list(k2,v2)
• reduce (k2, list(v2)) ) → list(v3)

• The system will handle
• Data distribution
• Parallel execution
• Fault tolerance



Example



Execution Overview



Execution Overview

• A master process will manage the execution of mappers and 
reducers
• Scheduling
• Managing metadata: where is the output of the mapper
• Fault tolerance



Execution Overview

• Map Phase:
• Input data is partitioned into M splits.

• Each split is 64 MB – 256 MB.
• Each map function will process one split and map functions are spread 

over multiple machines.
• The output of a map function is automatically partitioned based on the 

reduce key (k2) and stored on the local disk.



Execution Overview
• Reduce Phase:

• A reducer will copy a partition of data from each mapper.
• After it gets the partitions from all mappers, it sorts the data by the reduce 

key k2 to generate a list of (k2, list(v2)).
• The reduce function is called for each (k2, list(v2)).



Parallel execution of aggregation
• MapReduce is very similar to the parallel execution of aggregation

• The difference is that both map/reduce are UDFs, providing the flexibility 
of processing raw (unstructured) data.
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Fault tolerance

• The master process pings every worker periodically to detect 
worker failures.

• Any map tasks executed by a failed worker are re-executed
• This is because the local disk for the failed worker is not inaccessible.

• Any reduce tasks in progress are re-executed
• Completed reduce tasks do not need to be executed

• The output of a reducer is on a distributed file system.



Data locality

• The input data is stored in a distributed file system
• Each split is replicated (typically 3 copies)

• It is preferable to schedule a mapper to a node that has a copy it 
needs to process.

• If not, schedule the mapper closer to that copy
• Within a rack or sharing a switch

• This is to reduce network bandwidth usage.



Stragglers

• With a large number of mappers and reducers, there will be some 
of them executing very slowly, called stragglers
• Scheduling problems
• Slow/bad local disks

• Solution: backup tasks
• The master process will execute the same task on multiple workers. 
• If one of them finishes, the task is complete.



Data file formats

• Most DBMSs use a proprietary on-disk binary file format for their 
databases.

• The only way to share data between systems is to convert data 
into a common text-based format
• Examples: CSV, JSON, XML

• There are new open-source binary file formats that make it easier 
to access data across systems.



Data file formats
Apache Parquet

• Compressed columnar storage 
from Cloudera/Twitter

Apache ORC
• Compressed columnar storage 

from Apache Hive.

Apache CarbonData
• Compressed columnar storage 

with indexes from Huawei.

Apache Iceberg
• Flexible data format that supports 

schema evolution from Netflix.

HDF5
• Multi-dimensional arrays for 

scientific workloads.

Apache Arrow
• In-memory compressed columnar 

storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/


Recall: Parquet

• Apache Parquet is an open-source, column-oriented data file format. 

• It provides high-performance compression and encoding schemes to 
handle complex data in bulk.

• A parquet file consists of one or more row groups. 
• A row group is a partition of rows and includes a column chunk for each column 

in the dataset.
• A column chunk is guaranteed to be contiguous in the file and divided up into 

pages.
• A page is conceptually an indivisible unit (in terms of compression and encoding).
• There can be multiple page types that are interleaved in a column chunk.



Parquet file format
• There are N columns in this table, split 

into M row groups.
• The file metadata contains the 

locations of all the column chunk start 
locations.

• File metadata is written after the data 
to allow for single-pass writing.

• Readers first read the file metadata to 
find all the column chunks they are 
interested in. 

• The column chunks should then be 
read sequentially.



File metadata



Today’s agenda

• Current practice in distributed OLAP

• Cost-intelligent data analytics in the cloud



Recall cloud databases
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Cost from different perspectives
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Cost from different perspectives
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Cost from different perspectives
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Cost from different perspectives

Resource Pool
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Cost control is still difficult
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entire workload



Cost control is still difficult

Workload
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Fixed cluster size over the 
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Resource Waste!



Cost control is still difficult

Workload
Build Indexes

Build Materialized Views 

Re-partition Data

Re-train a Learned Module

DBA

$$$



Cost intelligence

Cost Efficiency
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The system’s ability to self-adapt to stay at the Pareto Frontier in the
performance- cost trade-off under different workloads and user constraints.

Pareto Frontier
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Base system architecture
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Automatic resource deployment
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Automatic resource deployment

Workload
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System architecture
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Build Indexes

Build Materialized Views

Re-partition Data

Re-train a Learned Module

Cost-oriented database auto-tuning

Total Benefit:

Total Cost:

$ $ $

$



Database tuning under fixed resources

Speeds up a subset of queries

MV update slows down writes

Read Perf:

Write Perf: Resource Contention
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System architecture
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Towards cost intelligence
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Cost is as important as performance in cloud-native databases
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AI-enhanced system components

• QO hint recommendation on workload
• Build a model for query hints

• SIGMOD best paper award



AI-enhanced system components

• Index recommendation on workload 
• Workload compression
• Workload forecasting

• Reducing what-if calls
• Performance regression



Query optimization & cardinality estimation

• Fast & accurate cardinality estimation is essential: 

• A wrong plan may result in1000x performance regression.

• Cardinality estimation: a tradeoff between costs & accuracy:

• Actual execution / multi-dim histograms / samples – expensive.  

• Production systems: column-wise stats – less accurate.   

SELECT * FROM A,B,C

ON A.t = B.t = C.t

WHERE A.a=X and B.b=Y and C.c=Z

Two plans:

Cheaper if the first join has fewer output rows (cardinality).

= join
Cost = 120           Cost = 17

Accuracy

Costs

Actual 
execution

Sampling

1D stats

Idea



ML-based cardinality estimation
• Recent ML-enhanced cardinality estimation solutions are instance-optimized. 

• Train a model per workload: MSCN [CIDR 18], Learned Models [VLDB 19, 20].

• Costly to label & to train models. Dataset/workload changes → retrain.

• Useful cardinality estimation:

• Small building latency.

• Adapting to changes quickly.

• 𝜇s latency per cardinality estimate. 

• High accuracy.

Query predicates

Col1 > 5 & Col2 < 10

Col1 > 7 & Col2 < 10

…

Training 
workload

Test 
workload

Cardinality

16

14

…Model

Col1 > 6 & Col2 < 10

… …

??15

SQL 
Server



Pretrained models structured tables

Yao Lu, Srikanth Kandula, Arnd Christian Konig, Surajit Chaudhuri. Pre-training Summarization Models of Structured Datasets for Cardinality Estimation. VLDB 2022.

New table w/ 
arbitrary schema

Table 
encoding 

model

Card. est.
model Prediction 

Embedding
(summary)

Querying/decoding stage

Query 
predicate

Building/encoding stage

✓ 𝜇s latency per cardinality estimate. 

• High accuracy.

✓ Small building latency.

▪ Adapting to changes quickly.

Use the models off-the-shelf as a part of the software for cardinality 
estimation.



Frequency distribution & correlation patterns in tables

• Images and text have common patterns.

• Accurate cardinality estimation depends on:
• Multi-dim frequency distribution & correlation patterns 

(not string semantics).

• Example: [Weather Col4, Weather Col5]

• Pretrained on 10Ks of relations from UCI ML repo.

• Similar/better accuracy @ small storage budget.

• 1-2 orders of magnitude faster to build. Per estimate in 𝜇s.

• Better cardinality estimation = end-to-end performance gains.

72

Embedding

Col4 < 10 & Col5 ∈ [5, 10]   Predicate
cardinality = 20

Yao Lu, Srikanth Kandula, Arnd Christian Konig, Surajit Chaudhuri. Pre-training Summarization Models of Structured Datasets for Cardinality Estimation. VLDB 2022.



Today’s agenda

• Current practice in distributed OLAP

• Cost-intelligent data analytics in the cloud



Credits

• Huanchen Zhang, Tsinghua
• Andy Pavlo, CMU
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