
CS4221
Cloud Databases III. OLAP optimizations

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

Today’s agenda

• Current practice in distributed OLAP

• Cost-intelligent data analytics in the cloud

The trend: disaggregated OLAP

• One recent trend of the last decade is the breakout of OLAP
engine sub-systems into standalone open-source components.
• This is typically done by organizations not in the business of selling DBMS

software.

• Examples:
• System Catalogs
• Query Optimizers
• File Format / Access Libraries
• Execution Engines

Recall: Snowflake architecture

Authentication & Access Control

Infrastructure

Manager
Optimizer

Transaction

Manager
Security

Metadata

VW 1

Cloud

Services

Virtual

Warehouses

VW 2 VW 3 VW 4

Data Storage

Amazon EC2

Amazon S3

System catalogs

• A DBMS tracks a database's schema (table, columns) and data
files in its catalog.
• If the DBMS is on the data ingestion path, it can maintain the catalog

incrementally.
• If an external process adds data files, it also needs to update the catalog

so that the DBMS is aware of them.

• Notable implementations:
• HCatalog
• Google Data Catalog
• Amazon Glue Data Catalog

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html

Execution engines

• Standalone libraries for executing vectorized query operators on
columnar data.
• Input is a DAG of physical operators.
• Require external scheduling and orchestration.

• Notable implementations:
• Velox
• DataFusion
• Intel OAP

https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/

Query optimizers

• Extendible search engine framework for heuristic- and cost-based
query optimization.
• Applications provide transformation rules and cost estimates.
• Framework returns either a logical or physical query plan.

• This is the hardest part to build in any DBMS.

• Notable implementations:
• Greenplum Orca
• Apache Calcite

https://github.com/greenplum-db/gporca
https://calcite.apache.org/

Query optimization for distributed execution

• All the optimizations that we talked about before are still
applicable in a distributed environment.
• Predicate Pushdown
• Projection Pushdown
• Optimal Join Orderings

• Distributed query optimization is even harder because it must
consider the physical location of data and network transfer costs.
• Using broadcast join vs. repartition join?
• Considering the impact of data partitioning.

Distributed query execution
• Executing an OLAP query in a distributed DBMS is roughly the

same as on a single-node DBMS.
• A query plan is represented as a tree of physical operators.

• For each operator, the DBMS considers where input is coming
from and where to send output, like parallel execution in a single
node.

Unique challenges
• Data is partitioned across nodes, so a worker thread does not

have access to all data for free: accessing data requires network
communication.

• Data is partitioned across nodes, so we need to consider
leveraging the distributed partitioning to accelerate query
executions.

• A query can run for a long time -> how to continue query
processing under node failures.

Parallel execution for joins

A2A1 A3
1 2 3

Gather

A B

⨝

B1 B2 B3
1 2 3

Probe HT Probe HT Probe HT

⨝

Gather
SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100 Build HT

Parallel execution for joins

A B

⨝

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

A2A1
1 2

B1 B2
1 2

Probe HT⨝

Build HT

Repartition

⨝ Probe HTBuild HT

Repartition

Gather

Distributed join algorithms

• The efficiency of a distributed join depends on the target tables'
partitioning schemes.

• One approach is to put entire tables on a single node and then
perform the join.
• This approach loses the parallelism of a distributed DBMS.
• Costly data transfer over the network.

Distributed join algorithms

• To join tables R and S, the DBMS needs to get the proper tuples on
the same node.

• Once the data is at the node, the DBMS then executes the same
join algorithms that we discussed earlier in the semester.
• Need to produce the correct answer as if all the data is located in a single

node system.

Scenario #1
• One table is replicated at every node.

Each node joins its local data in
parallel and then sends its results to a
coordinating node.
• Which tables to replicate?
• What is the cost?

R{id}

S

id:1-100

Replicated

R{id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
 ON R.id = S.id

P1:R⨝S P2:R⨝S
R⨝S

Scenario #2
• Tables are partitioned on the join

attribute using the same partitioning
function.

• Each node performs the join on local
data and then sends it to a coordinator
node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

P1:R⨝S P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

Scenario #3
• Both tables are partitioned on different

keys. If one of the tables is small, then
the DBMS "broadcasts" that table to
all nodes.
• Known as “broadcast join”.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

P1:R⨝S P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

Scenario #4
• Both tables are partitioned on different keys.

The DBMS copies/re-partitions the tables on
the fly across nodes.
• This repartitioned data is generally deleted when

the query is done.
• Known as “repartition join”

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S P2:R⨝S
R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

Query plan fragments

Approach #1: Physical Operators
• Generate a single query plan and then break it up into partition-specific

fragments.
• Most systems implement this approach.

Approach #2: SQL
• Rewrite the original query into partition-specific queries.
• Allows for local optimization at each node.

Query plan fragments

SELECT * FROM R JOIN S
 ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 201 AND 300

Union the output of each
join to produce final

result.

Query fault tolerance

• Most shared-nothing distributed OLAP DBMSs are designed to
assume that nodes do not fail during query execution.
• If one node fails during query execution, then the whole query fails.

• The DBMS could take a snapshot of the intermediate results for a
query during execution to allow it to recover if nodes fail.

Query fault tolerance

Storage
Node

Application
Server Node

R ⨝ S

SELECT * FROM R JOIN S
 ON R.id = S.id

Result: R ⨝
S

Result: R ⨝
S

MapReduce
• MapReduce is a data processing paradigm proposed by Google.
Motivation

• There is a large volume of raw (unstructured) data to process
• crawled documents, web request logs, etc.

• They want to build a system that can use hundreds to thousands of
machines.

• The system needs to be easy to program so that developers do not need
to worry about how to parallelize the data processing.

• Also, the system needs to tolerate node failures when executing a query.

MapReduce

• MapReduce is inspired by the map and reduce primitives of Lisp
and many other functional languages.

• Map function:
• applying the map function to each input record to compute a set of

intermediate key/value pairs.

• Reduce function:
• apply a reduce operation to all the values that share the same key to

combine the derived data for the same key together.

MapReduce

• Developers only need to define the map and reduce functions:
• map (k1,v1) → list(k2,v2)
• reduce (k2, list(v2))) → list(v3)

• The system will handle
• Data distribution
• Parallel execution
• Fault tolerance

Example

Execution Overview

Execution Overview

• A master process will manage the execution of mappers and
reducers
• Scheduling
• Managing metadata: where is the output of the mapper
• Fault tolerance

Execution Overview

• Map Phase:
• Input data is partitioned into M splits.

• Each split is 64 MB – 256 MB.
• Each map function will process one split and map functions are spread

over multiple machines.
• The output of a map function is automatically partitioned based on the

reduce key (k2) and stored on the local disk.

Execution Overview
• Reduce Phase:

• A reducer will copy a partition of data from each mapper.
• After it gets the partitions from all mappers, it sorts the data by the reduce

key k2 to generate a list of (k2, list(v2)).
• The reduce function is called for each (k2, list(v2)).

Parallel execution of aggregation
• MapReduce is very similar to the parallel execution of aggregation

• The difference is that both map/reduce are UDFs, providing the flexibility
of processing raw (unstructured) data.

1

Partitions

2

1, 1

Partition 1

6,2 4, 2
Partition 2

1, 1, 3, 6

2, 4, 5, 2

Pages

3, 5

Hash(Key) =
Key%2

Hash(Key) =
Key%2

3

4

Fault tolerance

• The master process pings every worker periodically to detect
worker failures.

• Any map tasks executed by a failed worker are re-executed
• This is because the local disk for the failed worker is not inaccessible.

• Any reduce tasks in progress are re-executed
• Completed reduce tasks do not need to be executed

• The output of a reducer is on a distributed file system.

Data locality

• The input data is stored in a distributed file system
• Each split is replicated (typically 3 copies)

• It is preferable to schedule a mapper to a node that has a copy it
needs to process.

• If not, schedule the mapper closer to that copy
• Within a rack or sharing a switch

• This is to reduce network bandwidth usage.

Stragglers

• With a large number of mappers and reducers, there will be some
of them executing very slowly, called stragglers
• Scheduling problems
• Slow/bad local disks

• Solution: backup tasks
• The master process will execute the same task on multiple workers.
• If one of them finishes, the task is complete.

Data file formats

• Most DBMSs use a proprietary on-disk binary file format for their
databases.

• The only way to share data between systems is to convert data
into a common text-based format
• Examples: CSV, JSON, XML

• There are new open-source binary file formats that make it easier
to access data across systems.

Data file formats
Apache Parquet

• Compressed columnar storage
from Cloudera/Twitter

Apache ORC
• Compressed columnar storage

from Apache Hive.

Apache CarbonData
• Compressed columnar storage

with indexes from Huawei.

Apache Iceberg
• Flexible data format that supports

schema evolution from Netflix.

HDF5
• Multi-dimensional arrays for

scientific workloads.

Apache Arrow
• In-memory compressed columnar

storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

Recall: Parquet

• Apache Parquet is an open-source, column-oriented data file format.

• It provides high-performance compression and encoding schemes to
handle complex data in bulk.

• A parquet file consists of one or more row groups.
• A row group is a partition of rows and includes a column chunk for each column

in the dataset.
• A column chunk is guaranteed to be contiguous in the file and divided up into

pages.
• A page is conceptually an indivisible unit (in terms of compression and encoding).
• There can be multiple page types that are interleaved in a column chunk.

Parquet file format
• There are N columns in this table, split

into M row groups.
• The file metadata contains the

locations of all the column chunk start
locations.

• File metadata is written after the data
to allow for single-pass writing.

• Readers first read the file metadata to
find all the column chunks they are
interested in.

• The column chunks should then be
read sequentially.

File metadata

Today’s agenda

• Current practice in distributed OLAP

• Cost-intelligent data analytics in the cloud

Recall cloud databases

Traditional Cloud-Native

$$$

$$$

$

Elasticity

pay-as-you-go

$ Cost

Database optimization in the cloud era

User Profit

Π

Traditional

Cloud-Native

Utility

U(p) - C

p ↑

Fix, Large

Csunk + Cϵ

Enabled by

Elasticity
p ΔC

Bi-Objective

Optimization

Cost from different perspectives

User-Observable Cost

Resource Pool

Provider-Observable Cost

Cost from different perspectives

C

Resource Pool

User-Observable Cost

Provider-Observable Cost

BA

Cost from different perspectives

Resource Pool

CA B

A B C

User-Observable Cost

Provider-Observable Cost

Cost from different perspectives

Resource Pool

[Multi-Tenancy Techniques]

User-Observable Cost

Provider-Observable Cost

CA B

A B C

Cost from different perspectives

Resource Pool

[Multi-Tenancy Techniques]

User-Observable Cost

Provider-Observable Cost

CA B

A B C

Cost control is still difficult

Workload
Users tend to over-provision

Fixed cluster size over the

entire workload

Cost control is still difficult

Workload
Users tend to over-provision

Fixed cluster size over the

entire workload

Resource Waste!

Cost control is still difficult

Workload
Build Indexes

Build Materialized Views

Re-partition Data

Re-train a Learned Module

DBA

$$$

Cost intelligence

Cost Efficiency

P
e

rf
o

rm
a

n
c

e

The system’s ability to self-adapt to stay at the Pareto Frontier in the
performance- cost trade-off under different workloads and user constraints.

Pareto Frontier

Build Indexes

Build Materialized Views

Re-partition Data

Re-train a Learned Module

DBA

$$$

Workload

Cost:

Time: 10s 10min

$2 $0.1

An Idea UI

Total Benefit:

Total Cost:

$ $ $

$

Workload

Cost:

Time: 10s 10min

$2 $0.1

An Idea UI

Base system architecture

Storage

Elastic

Compute

Optimizer
Query

Result

Plan Result

Metadata

Service

Automatic resource deployment

Workload

Config 1

Config 2

100 min

1 min

Same $ Cost 100x performance boost!

100 servers

Automatic resource deployment

Workload

Config 1

Config 2

100 min

100 min

100x $ Cost Same performance

100 servers

System architecture

Elastic

Compute

Optimizer
Query

Result

Plan Result

Metadata

Service

Storage

System architecture

Elastic

Compute

Query

Result

Result

Metadata

Service

Cost

Predictor
Bi-Objective Optimizer

Cost-Aware

Plan

Storage

System architecture

Elastic

Compute

Query

Result

Metadata

Service

Cost

Predictor
Bi-Objective Optimizer

Cost-Aware

Plan

DOP

Monitor

Storage

Build Indexes

Build Materialized Views

Re-partition Data

Re-train a Learned Module

Cost-oriented database auto-tuning

Total Benefit:

Total Cost:

$ $ $

$

Database tuning under fixed resources

Speeds up a subset of queries

MV update slows down writes

Read Perf:

Write Perf: Resource Contention

System architecture

Elastic

Compute

Query

Result

Metadata

Service

Cost

Predictor
Bi-Objective Optimizer

Cost-Aware

Plan

DOP

Monitor Statistics Service
Update

Workload Summaries

- weighted join graphs

File/Column Access Stats

Exec History

Storage

System architecture

Elastic

Compute

Query

Result

Metadata

Service

Cost

Predictor
Bi-Objective Optimizer

Cost-Aware

Plan

DOP

Monitor Statistics Service
Update

Workload Summaries

- weighted join graphs

File/Column Access Stats

What-If Service
Tuning

Proposal

Exec History

Storage

System architecture

Elastic

Compute

Query

Result

Metadata

Service

Cost

Predictor
Bi-Objective Optimizer

Cost-Aware

Plan

DOP

Monitor Statistics Service
Update

What-If Service
Tuning

Proposal

Background

Compute

Tuning Action

Exec History

Storage

System architecture

Elastic

Compute

DOP

Monitor

Bi-Objective Optimizer
Query

Result

Metadata

Service

Cost

Predictor

Statistics Service

What-If Service

Update

Auto-

Tuning

Background

Compute

Tuning Action

Exec History

Proposal

Cost-Aware

Plan

Storage

Towards cost intelligence

Cost Efficiency

P
e
rf

o
rm

a
n

c
e

Pareto Frontier

Cost is as important as performance in cloud-native databases

Cost:

Time: 10s 10min

$2 $0.1

Total Cost:

Total Benefit: $ $ $

$

AI-enhanced system components

• QO hint recommendation on workload
• Build a model for query hints

• SIGMOD best paper award

AI-enhanced system components

• Index recommendation on workload
• Workload compression
• Workload forecasting

• Reducing what-if calls
• Performance regression

Query optimization & cardinality estimation

• Fast & accurate cardinality estimation is essential:

• A wrong plan may result in1000x performance regression.

• Cardinality estimation: a tradeoff between costs & accuracy:

• Actual execution / multi-dim histograms / samples – expensive.

• Production systems: column-wise stats – less accurate.

SELECT * FROM A,B,C

ON A.t = B.t = C.t

WHERE A.a=X and B.b=Y and C.c=Z

Two plans:

Cheaper if the first join has fewer output rows (cardinality).

= join
Cost = 120 Cost = 17

Accuracy

Costs

Actual
execution

Sampling

1D stats

Idea

ML-based cardinality estimation
• Recent ML-enhanced cardinality estimation solutions are instance-optimized.

• Train a model per workload: MSCN [CIDR 18], Learned Models [VLDB 19, 20].

• Costly to label & to train models. Dataset/workload changes → retrain.

• Useful cardinality estimation:

• Small building latency.

• Adapting to changes quickly.

• 𝜇s latency per cardinality estimate.

• High accuracy.

Query predicates

Col1 > 5 & Col2 < 10

Col1 > 7 & Col2 < 10

…

Training
workload

Test
workload

Cardinality

16

14

…Model

Col1 > 6 & Col2 < 10

… …

??15

SQL
Server

Pretrained models structured tables

Yao Lu, Srikanth Kandula, Arnd Christian Konig, Surajit Chaudhuri. Pre-training Summarization Models of Structured Datasets for Cardinality Estimation. VLDB 2022.

New table w/
arbitrary schema

Table
encoding

model

Card. est.
model Prediction

Embedding
(summary)

Querying/decoding stage

Query
predicate

Building/encoding stage

✓ 𝜇s latency per cardinality estimate.

• High accuracy.

✓ Small building latency.

▪ Adapting to changes quickly.

Use the models off-the-shelf as a part of the software for cardinality
estimation.

Frequency distribution & correlation patterns in tables

• Images and text have common patterns.

• Accurate cardinality estimation depends on:
• Multi-dim frequency distribution & correlation patterns

(not string semantics).

• Example: [Weather Col4, Weather Col5]

• Pretrained on 10Ks of relations from UCI ML repo.

• Similar/better accuracy @ small storage budget.

• 1-2 orders of magnitude faster to build. Per estimate in 𝜇s.

• Better cardinality estimation = end-to-end performance gains.

72

Embedding

Col4 < 10 & Col5 ∈ [5, 10] Predicate
cardinality = 20

Yao Lu, Srikanth Kandula, Arnd Christian Konig, Surajit Chaudhuri. Pre-training Summarization Models of Structured Datasets for Cardinality Estimation. VLDB 2022.

Today’s agenda

• Current practice in distributed OLAP

• Cost-intelligent data analytics in the cloud

Credits

• Huanchen Zhang, Tsinghua
• Andy Pavlo, CMU

	Slide 1: CS4221 Cloud Databases III. OLAP optimizations
	Slide 2: Today’s agenda
	Slide 3: The trend: disaggregated OLAP
	Slide 4: Recall: Snowflake architecture
	Slide 5: System catalogs
	Slide 6: Execution engines
	Slide 7: Query optimizers
	Slide 8: Query optimization for distributed execution
	Slide 9: Distributed query execution
	Slide 10: Unique challenges
	Slide 11: Parallel execution for joins
	Slide 12: Parallel execution for joins
	Slide 13: Distributed join algorithms
	Slide 14: Distributed join algorithms
	Slide 15: Scenario #1
	Slide 16: Scenario #2
	Slide 17: Scenario #3
	Slide 18: Scenario #4
	Slide 19: Query plan fragments
	Slide 20: Query plan fragments
	Slide 21: Query fault tolerance
	Slide 22: Query fault tolerance
	Slide 23: MapReduce
	Slide 24: MapReduce
	Slide 25: MapReduce
	Slide 26: Example
	Slide 27: Execution Overview
	Slide 28: Execution Overview
	Slide 29: Execution Overview
	Slide 30: Execution Overview
	Slide 31: Parallel execution of aggregation
	Slide 32: Fault tolerance
	Slide 33: Data locality
	Slide 34: Stragglers
	Slide 35: Data file formats
	Slide 36: Data file formats
	Slide 37: Recall: Parquet
	Slide 38: Parquet file format
	Slide 39: File metadata
	Slide 40: Today’s agenda
	Slide 41: Recall cloud databases
	Slide 42: Database optimization in the cloud era
	Slide 43: Cost from different perspectives
	Slide 44: Cost from different perspectives
	Slide 45: Cost from different perspectives
	Slide 46: Cost from different perspectives
	Slide 47: Cost from different perspectives
	Slide 48: Cost control is still difficult
	Slide 49: Cost control is still difficult
	Slide 50: Cost control is still difficult
	Slide 51: Cost intelligence
	Slide 52: An Idea UI
	Slide 53: An Idea UI
	Slide 54: Base system architecture
	Slide 55: Automatic resource deployment
	Slide 56: Automatic resource deployment
	Slide 57: System architecture
	Slide 58: System architecture
	Slide 59: System architecture
	Slide 60: Cost-oriented database auto-tuning
	Slide 61: Database tuning under fixed resources
	Slide 62: System architecture
	Slide 63: System architecture
	Slide 64: System architecture
	Slide 65: System architecture
	Slide 66: Towards cost intelligence
	Slide 67: AI-enhanced system components
	Slide 68: AI-enhanced system components
	Slide 69: Query optimization & cardinality estimation
	Slide 70: ML-based cardinality estimation
	Slide 71: Pretrained models structured tables
	Slide 72: Frequency distribution & correlation patterns in tables
	Slide 73: Today’s agenda
	Slide 74: Credits

