CS4221 Cloud Databases IV. Data Integration

Yao LU 2024 Semester 2

National University of Singapore School of Computing

What is data integration?

- **Data integration**: to provide unified access to data residing in multiple, autonomous data sources
 - **Data warehouse:** create a single store (materialized view) of data from different sources offline. Multi-billion dollar business.
 - **Virtual integration**: support query over a mediated schema by applying online query reformulation. E.g., Kayak.com.
- In the Resource Description Framework: different names for similar concepts
 - Knowledge graph is equivalent to a data warehouse. Has been widely used in Search and Voice
 - Linked data is equivalent to virtual integration

What is data integration?

- Heterogeneity everywhere
 - Different data formats Ο

Data Extraction

Why is data integration hard?

- Heterogeneity everywhere
 - Different ways to express the same classes and attributes

SEE RANK

IMDB

Anahí

Actress | Music Department | Soundtrack

Anahi was born in Mexico. She's had roles in Tu y Yo, in which she played a 17 year old girl while she was 13, and Vivo Por Elena, in which she played Talita, a naive and innocent teenager. Anahi lives with her mother and sister name Marychelo. She hopes to become a fashion designer one day, and is currently pursuing a career in singing. See full bio »

Born: May 14, 1982 in Mexico City, Distrito Federal, Mexico

More at IMDbPro »

Why is data integration hard?

Heterogeneity everywhere

IMDB

Different references to the same entity Ο

+ add value

Why is data integration hard?

- Heterogeneity everywhere
 - Conflicting values

IMDB

Actress | Music Department | Soundtrack

Anahi was born in Mexico. She's had roles in Tu y Yo, in which she played a 17 year old girl while she was 13, and Vivo Por Elena, in which she played Talita, a naive and innocent teenager. Anahi lives with her mother and sister name Marychelo. She hopes to become a fashion designer one day, and is currently pursuing a career in singing. See full bio »

SEE RANK

Born: May 14, 1982 n Mexico City, Distrito Federal, Mexico

More at IMDbPro »

Contact Info: View manager

Importance from a practitioner's point of view

- Entity linkage is indispensable whenever integrating data from different sources
- Data extraction is important for integrating nonrelational data
- Data fusion is necessary in presence of erroneous data
- Schema alignment is helpful when integrating relational data, but not affordable for manual work if we integrate many sources

Two main types of Machine Learning

- Supervised learning: learn by examples
- Unsupervised learning: find structure w/o examples

F	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

DI & ML as synergy

• ML for effective DI: AUTOMATION

- Automating DI tasks with training data
- Better understanding of semantics by neural network

• DI for effective ML: DATA

- Create large-scale training datasets from different sources
- Cleaning of data used for training
- Refer to the Data Curation lecture earlier

Many systems where DI & ML leverage each other

Example system: Product Graph [Dong, KDD'18]

Data integration overview

- Entity linkage: linking records to entities; indispensable when different sources exist
- Data extraction: extracting structured data; important when non-relational data exist
- Data fusion: resolving conflicts; necessary in presence of erroneous data
- Schema alignment: aligning types and attributes; helpful when different relational schemas exist

Today's agenda

- Part I. Introduction
- Part II. ML for DI
 - ML for entity linkage
 - ML for data extraction
 - ML for schema alignment
 - ML for data fusion

What is entity linkage?

• Definition: Partition a given set R of records, such that each partition corresponds to a distinct real-world entity.

SEE RANK

Are they the same entity?

IMDB

Anahí

Actress | Music Department | Soundtrack

Anahi was born in Mexico. She's had roles in Tu y Yo, in which she played a 17 year old girl while she was 13, and Vivo Por Elena, in which she played Talita, a naive and innocent teenager. Anahi lives with her mother and sister name Marychelo. She hopes to become a fashion designer one day, and is currently pursuing a career in singing. See full bio »

Born: May 14, 1982 in Mexico City, Distrito Federal, Mexico

More at IMDbPro » Contact Info: View manager

WikiData Anahí Puente (Q169461)

Mexican singer-songwriter and actress Mia

▼ In more languages Configure

in the second second	.9			
Language	Label	Description		
English	Anahí Puente	Mexican singer-songwriter and actress		
Chinese	阿纳希·普恩特	No description defined		
Spanish	Anahí Puente	Cantante, compositora y actriz mexicana		
date of birth	7 November 1983	🖉 edit		
	imported from	Italian Wikipedia		
		+ add reference		
		+ add value		

Quick tour for entity linkage

• **Blocking**: efficiently create small blocks

Quick tour for entity linkage

• Pairwise matching: compare all record

Quick tour for entity linkage

• **Clustering**: group records into entities

50 years of entity linkage

Rule-based and stats-based

 Blocking: e.g., san Matching: e.g., avg attribute values Clustering: e.g., tra closure, etc. 2 	ne name g similarity of Insitive 000 (Early ML)	 Random fore F-msr: >95% Active learnin F-msr: 80%- 	est for matching w~1M labels ng for blocking & matching 98% w.~1000 labels 2018 (Deep ML)	
1969 (Pre-ML)	 Sup / Unsup learning Matching: Dec F-msr: 70%-9 Clustering: Con Markov cluste 	~2015 (ML) g cision tree, SVM 0% w.500 labels rrelation clustering, rring	 Deep learning Deep learning Entity embedding 	

Supervised learning

Rule-based solution

Rule-based and stats-based

- Blocking: e.g., same name
- Matching: e.g., avg similarity of attribute values
- Clustering: e.g., transitive closure, etc.

- [Fellegi and Sunter, 1969]
 - Match: $sim(r, r') > \theta_h$
 - Unmatch: $sim(r, r') < \theta_{l}$
 - Possible match:

 $\boldsymbol{\theta}_{l} < sim(r, r') < \boldsymbol{\theta}_{h}$

Early ML models

• [Köpcke et al, VLDB'10]

~2000 (Early ML)

Sup / Unsup learning

- Matching: Decision tree, SVM
 F-msr: 70%-90% w.500 labels
- Clustering: Correlation clustering, Markov clustering

Collective entity resolution: beyond pairs

- Collective reasoning across entities.
- Constraints across entities:
 - Aggregate constraints
 - Transitivity, Exclusivity
 - Functional dependencies
- Use of probabilistic graphical models, etc., to capture such domain knowledge

before

after

[Example by Getoor and Machanavajjhala]

Supervised learning

- Random forest for matching F-msr: >95% w. ~ 1M labels
- AL for blocking & matching F-msr: 80%-98% w. ~1000

labels

- Features: attribute similarity measured in various ways. E.g.,
 - String sim: Jaccard, Levenshtein
 - Number sim: absolute diff, relative diff
- ML models on Freebase vs. IMDb
 - Logistic regression: Prec=0.99, Rec=0.6
 - Random forest: Prec=0.99, Rec=0.99

Supervised learning

- Random forest for matching
 F-msr: >95% w. ~ 1M labels
- AL for blocking & matching
 F-msr: 80%-98% w. ~1000

labels

- Expt 1. IMDb vs. Freebase
 - Logistic regression: Prec=0.99, Rec=0.6
 - Random forest: Prec=0.99, Rec=0.99

Supervised learning

- Random forest for matching F-msr: >95% w. ~ 1M labels
- AL for blocking & matching F-msr: 80%-98% w. ~1000

labels

- Features: attribute similarity measured in various ways. E.g.,
 - name sim: Jaccard, Levenshtein
 - \circ age sim: absolute diff, relative diff
- ML models on Freebase vs. IMDb
 - Logistic regression: Prec=0.99, Rec=0.6
 - Random forest: Prec=0.99, Rec=0.99
 - XGBoost: marginally better, but sensitive to hyper-parameters

Supervised learning

- Random forest for matching
 F-msr: >95% w. ~ 1M labels
- AL for blocking & matching
 F-msr: 80%-98% w. ~1000

labels

- Expt 2. IMDb vs. Amazon movies
 - 200K labels, ~150 features
 - Random forest: Prec=0.98, Rec=0.95

Supervised learning

- Random forest for matching F-msr: >95% w. ~ 1M labels
- AL for blocking & matching
 F-msr: 80%-98% w. ~1000

labels

~2015 (ML)

 Falcon: apply active learning both for blocking and for matching; ~1000 labels

Dataset	Accuracy (%)		(%)	Cost
Dataset	P	R	F_1	(# Questions)
Products	90.9	74.5	81.9	\$57.6 (960)
Songs	96.0	99.3	97.6	\$54.0 (900)
Citations	92.0	98.5	95.2	65.5(1087)

Supervised learning

- Random forest for matching F-msr: >95% w. ~ 1M labels
- AL for blocking & matching F-msr: 80%-98% w. ~1000

labels

~2015 (ML)

• Apply active learning to minimize #labels

For 99% precision and recall, active learning reduces #labels by 2 orders of magnitude Reaching prec=99% and rec=~99% requires 1.5M labels

Deep learning models [Mudgal et al., SIGMOD'18]

• Embedding on similarities

- Magellan
- Similar performance for structured data;

Significant improvement on texts and dirty data

2018 (Deep ML)

Deep learning

- Deep learning
- Entity embedding

Deep learning models [Ebraheem et al., VLDB'18]

- Embedding on entities
- Outperforming existing solution

2018 (Deep ML)

Deep learning

- Deep learning
- Entity embedding

Deep learning models [Trivedi et al., ACL'18]

• LinkNBed: Embeddings for entities as in knowledge embedding

Deep learning models [Trivedi et al., ACL'18]

- LinkNBed: Embeddings for entities as in knowledge embedding
- Performance better than previous knowledge embedding methods, but not comparable to random forest
- Enable linking different types of entities

Deep learning

- Deep learning
- Entity embedding

2018 (Deep ML)

Challenges in applying ML on EL

- How can we obtain abundant training data for many types, many sources, and dynamically evolving data?
- From two sources to multiple sources

Challenges in applying ML on EL

- How can we obtain abundant training data for many types, many sources, and dynamically evolving data??
- From one entity type to multiple types

Challenges in applying ML on EL

- How can we obtain abundant training data for many types, many sources, and dynamically evolving data?
- From static data to dynamic data

Recipe for entity linkage

- Problem definition: Link references to the same entity
- Short answers
 - RF w. attributesimilarity features
- Production Ready
 - DL to handle texts and noises

Today's agenda

- Part I. Introduction
- Part II. ML for DI
 - ML for entity linkage
 - ML for data extraction
 - ML for schema alignment
 - ML for data fusion

What is data extraction?

• Definition: Extract structured information, e.g., (entity, attribute, value) triples, from semi-structured data or unstructured data.

Three types of data extraction

- Closed-world extraction: align to existing entities and attributes; e.g., (ID_Obama, place_of_birth, ID_USA)
- ClosedIE: align to existing attributes, but extract new entities; e.g., ("Xin Luna Dong", place_of_birth, "China")
- OpenIE: not limited by existing entities or attributes; e.g., ("Xin Luna Dong", "was born in", "China"), ("Luna", "is originally from", "China")

35 years of data extraction

 Early Extraction Rule-based: Hearst pattern, IBM System T Tasks: IS-A, events 	 Extraction from semi-structured data WebTables: search, extraction DOM tree: wrapper induction 			
• ~2005 (Rel. Ex.)	• 2013 (Deep ML)			
1992 (Rule-based) 20	08 (Semi-stru)			
 Relation extraction from NER→EL→RE NER→EL→RE Feature base Kernel base Distant supervision OpenIE 	textsDeep learningsed: LR, SVMUse RNN, CNN, attention for REsed: SVMData programming / Heterogeneous learningonRevisit DOM extraction			

Bill Gates founded Microsoft in 1975.

Relation Extraction

Entity **linkage**: linking two structured records Entity **linking**: linking a phrase in texts to an entity in a reference list (e.g., knowledge graph)

Relation Extraction

We focus on Relation Extraction.

Extraction from texts: feature based [Zhou et al., ACL'05]

~2005 (Rel. Ex.)

Relation extraction from texts

- $NER \rightarrow EL \rightarrow RE$
 - Feature based: LR, SVM

 Results Ο
 - Kernel based: SVM Ο
- Distant supervision
- OpenIE

Models

- Logistic regression Ο
- SVM (Support Vector Machine) Ο

Features

- Lexical: entity, part-of-speech, neighbor Ο
- Syntactic: **chunking**, parse tree Ο
- Semantic: concept hierarchy, entity class Ο
- - Prec=~60%, Rec=~50% Ο

Extraction from texts: feature based [Zhou et al., ACL'05]

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

Features	Р	R	F	
Words	69.2	23.7	35.3	- 52
+Entity Type	67.1	32.1	43.4	
+Mention Level	67.1	33.0	44.2	
+Overlap	57.4	40.9	47.8	Major
+Chunking	61.5	46.5	53.0	lviajor Lift
+Dependency Tree	62.1	47.2	53.6	
+Parse Tree	62.3	47.6	54.0	
+Semantic Resources	63.1	49.5	55.5	
	A 41.00	-		

Table 2: Contribution of different features over 43 relation subtypes in the test data

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

- Models
 - SVM (Support Vector Machine)
- Kernels
 - Subsequence
 - Dependency tree
 - Shortest dependency path
 - Convolution dependency

OpenIE

Shortest dependency path

~2005 (Rel. Ex.)

Relation extraction from texts

- $NER \rightarrow EL \rightarrow RE$
 - Feature based: LR, SVM **Results** Ο
 - Kernel based: SVM 0
- Distant supervision
- OpenIE

- Models
 - SVM (Support Vector Machine)
- **Kernels**
 - Subsequence Ο
 - Dependency tree Ο
 - Shortest dependency path \bigcirc
 - Convolution dependency Ο
 - - Prec=~70%, Rec=~40% Ο

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

	5-fold CV on ACE 2003					
kernel method	Precision	Recall	F1			
subsequence	0.703	0.389	0.546			
dependency tree	0.681	0.290	0.485			
shortest path	0.747	0.376	0.562			

Table 1: Results of different kernels on ACE 2003 training set using 5-fold cross-validation.

Extraction from Texts: deep learning

• Same intuitions, different models

- (2012-13) Recursive NN: dependency tree
 [Socher et al., EMNLP'12] [Hashimoto et al., EMNLP'13]
- (2014-15) CNN: shortest dependency path [Zeng et al., COLING'14][Liu et al., ACL'15]
- (2015+) LSTM: shortest dependency path, lexical/syntactic/semantic features
 [Xu et al., EMNLP'15][Shwartz et al., ACL'16]
 [Nguyen, NAACL'16]

2013 (Deep ML)

Deep learning

- Use RNN, CNN, attention for RE
- Data programming / Heterogeneous learning
- Revisit DOM extraction

Example system: HyperNET [Shwartz et al., ACL'16]

Quality in identifying hypernyms: Prec = 0.9, Rec = 0.9

Label generation for extraction training

Where are training labels from?

~2005 (Rel. Ex.)

• Semi-supervised learning

Iterative extraction [Carlson et al., AAAI'10]
 Use new extractions to retrain models
 E.g., NELL

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

Iterations	Estimated Precision (%)	# Promotions		
1-22	90	88,502		
23-44	71	77,835		
45-66	57	76,116		

Label generation for extraction training

Where are training labels from?

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

• Semi-supervised learning

Iterative extraction [Carlson et al., AAAI'10]
 Use new extractions to retrain models
 E.g., NELL

• Weak learning

Distant supervision [Mintz et al., ACL'09]
 Rule-based annotation with seed data
 E.g., DeepDive, Knowledge Vault

Will cover in "DI for ML"

Distant Supervision [Mintz et al., ACL'09]

Corpus Text

- Bill Gates founded Microsoft in 1975. Bill Gates, founder of Microsoft, ... Bill Gates attended Harvard from ...
- Google was founded by Larry Page ...

Freebase

- (Bill Gates, Founder, Microsoft) (Larry Page, Founder, Google)
- (Bill Gates, CollegeAttended, Harvard)

Training Data

(Bill Gates, Microsoft) Label: Founder Feature: X founded Y

[Adapted example from Luke Zettlemoyer]

Distant Supervision [Mintz et al., ACL'09]

Corpus Text

- Bill Gates founded Microsoft in 1975. Bill Gates, founder of Microsoft, ... Bill Gates attended Harvard from ...
- Google was founded by Larry Page ...

Freebase

- (Bill Gates, Founder, Microsoft) (Larry Page, Founder, Google)
- (Bill Gates, CollegeAttended, Harvard)

Training Data

(Bill Gates, Microsoft)Label: FounderFeature: X founded YFeature: X, founder of Y

(Bill Gates, Harvard) Label: CollegeAttended Feature: X attended Y

For negative examples, sample unrelated pairs of entities.

[Adapted example from Luke Zettlemoyer]

Label generation for extraction training

Where are training labels from?

• Distant supervision: HyperNet++ [Christodoulopoulos & Mittal, 18]

• NER \rightarrow EL \rightarrow RE

~2005 (Rel. Ex.)

- Feature based: LR, SVM
- Kernel based: SVM
- Distant supervision
- OpenIE

Label generation for extraction training

Where are training labels from?

2013 (Deep ML)

Deep learning

- Use RNN, CNN, attention for RE
- Data programming / Heterogeneous learning
- Revisit DOM extraction

Will cover in "DI for ML"

• Semi-supervised learning

Iterative extraction [Carlson et al., AAAI'10]
 Use new extractions to retrain models
 E.g., NELL

• Weak learning

- Distant supervision [Mintz et al., ACL'09]
 Rule-based annotation with seed data
 E.g., DeepDive, Knowledge Vault
- Data programming [Ratner et al., NIPS'16]
 Manually write labelling functions
 E.g., Snorkle, Fouduer

Snorkel: code as supervision [Ratner et al., NIPS'16, VLDB'18]

Example system: Fonduer [Wu et al., SIGMOD'18]

Fonduer combines a new **biLSTM with multimodal features** and **data programming**.

System	ELEC.	GEN.		
Knowledge Base	Digi-Key	GWAS Central	GWAS Catalog	
# Entries in KB	376	3,008	4,023	
# Entries in Fonduer	447	6,420	6,420	
Coverage	0.99	0.82	0.80	
Accuracy	0.87	0.87	0.89	
# New Correct Entries	17	3,154	2,486	
Increase in Correct Entries	1.05×	1.87×	1.42×	

Code: https://github.com/HazyResearch/fonduer

Extraction from semi-structured data

Extraction from semi-structured data

- WebTables: search, extraction
- DOM tree: wrapper induction

2008 (Semi-stru)

Why semi-structured data?

• Knowledge Vault @ Google showed big potential from DOM-tree extraction [Dong et al., KDD'14][Dong et al., VLDB'14]

Extracted relationships

- (Top Gun, type.object.name, "Top Gun")
- (Top Gun, film.film.genre, Action)
- (Top Gun, film.film.directed_by, Tony Scott)
- (Top Gun, film.film.starring, Tom Cruise)
- (Top Gun, film.film.runtime, "1h 50min")
- (Top Gun, film.film.release_Date_s, "16 May 1986")

• Solution: find XPaths from DOM Trees

ilmography 💿 sho	ow all Show by 📀 Ec			
ump to: Actor Producer Soundtrack Director Writer Thanks Self Archive footage				
Actor (46 credits)	Hide 🔺			
Top Gun: Maverick (pre-production) Maverick	2019			
M:I 6 - Mission Impossible (<i>filming</i>) Ethan Hunt	2018			
American Made (completed) Barry Seal	2017			
Luna Park (announced)				
The Mummy Nick Morton	2017			
Jack Reacher: Never Go Back Jack Reacher	2016			
Mission: Impossible - Rogue Nation Ethan Hunt	2015			
Edge of Tomorrow Cage	2014			
Oblivion Jack	2013/I			
Jack Reacher Reacher	2012			
Rock of Ages Stacee Jaxx	2012			
Mission: Impossible - Ghost Protocol Ethan Hunt	2011			
Knight and Day Roy Miller	2010			
Valkyrie Colonel Claus von Stauffenberg	2008			
Tropic Thunder	2008			

▼ <div id="filmography"> == \$0</div>
<pre>><div class="head" data-category="actor" id="filmo-head-actor" onclick="</pre"></div></pre>
"toggleFilmoCategory(this);">
▼ <div class="filmo-category-section"></div>
<pre>▼<div class="filmo-row odd" id="actor-tt1745960"></div></pre>

2019
▼<0>
Top Gun: Maverick
0
(- brof-"/r(loppor-inprod-page/title/tt17/5060" class-"in production"-pro-
production
Maverick
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
<pre>>> <div class="filmo-row odd" id="actor-tt3532216"></div></pre>
<pre>>> <div class="filmo-row even" id="actor-tt1123441"></div></pre>
<pre>▼<div class="filmo-row odd" id="actor-tt2345759"></div></pre>

2017
▼
The Mummy
<07>
Nick Morton
01v
▶ <div class="filmo-row even" id="actor-tt3393786"></div>
<pre>><div class="filmo-row odd" id="actor-tt2381249"></div></pre>
<pre><div class="filmo-row even" id="actor-ttl631867"></div></pre>
<pre><div class="filmo-row odd" id="actor-tt1483013"></div></pre>
<pre><div class="filmo-row even" id="actor-tt0790724"></div></pre>
<pre><div class="filmo-row odd" id="actor-tt1336608"></div></pre>

• Challenge: slight variations from page to page

• Challenge: slight variations from page to page

- Sample learned XPaths on IMDb
 - o //*[@itemprop="name"]

Ensure high recall

- //*[@class="bp_item bp_text_only"]/*/*/*[@class="bp_heading"]
- //*[following-sibling::*[position()=3][@class="subheading"]]/*[followin g-sibling::*[position()=1][@class="attribute"]]
- //*[preceding-sibling::node()[normalize-space(.)!=""][text()="Languag e:"]

Distantly supervised extraction

2013 (Deep ML)

Deep learning

- Use RNN, CNN, attention for RE
- Data programming / Heterogeneous learning
- Revisit DOM extraction

• Annotation-based extraction

- Pros: high precision and recall
- Cons: does not scale--annotation per cluster per website

- Distantly-supervised extraction
 - Step 1. Use seed data to automatically annotate
 - Step 2. Use the (noisy) annotations for training
 - E.g., DeepDive, Knowledge Vault

Popularity

Stars: Tom Cruise, Tim Robbins, Kelly McGillis | See full cast & crew »

Reviews

Metascore

Genre Release Date

> Popularity

Metascore

Reviews

Extracted triples

- (Top Gun, type.object.name, "Top Gun")
- (Top Gun, film.film.genre, Action)
- (Top Gun, film.film.directed_by, Tony Scott)
- (Top Gun, film.film.starring, Tom Cruise)
- (Top Gun, film.film.runtime, "1h 50min")
- (Top Gun, film.film.release_Date_s, "16 May 1986")

- Annotation-based extraction
- Distantly-supervised extraction

2013 (Deep ML)

Deep learning

- Use RNN, CNN, attention for RE
- Data programming / Heterogeneous learning
- **Revisit DOM extraction**

	Vertex (Gulhane et al, 2011)				Vertex (Gulhane et al, 2011) Ceres			
	Prec	Rec	F1	#Pred	Prec	Rec	F1	#Pred
Movie	0.97	0.97	0.97	4	0.97	0.99	0.98	4
NBAPlayer	1.00	1.00	1.00	4	0.98	0.98	0.98	4
University	0.99	0.98	0.99	4	0.87	0.94	0.90	4
Book	0.93	0.93	0.93	5	0.94	0.63	0.70	
Very high precision							C	Compet wrap

• Extraction on long-tail movie websites

#Websites / #Webpages	33 / 434K
Language	English and 6 other languages
Domains	Animated films, Documentary films, Financial performance, etc.
# Annotated pages	70K (16%)
Annotated : Extracted #entities	1 : 2.6
Annotated : Extracted #triples	1: 3.0
# Extractions	1.25 M
Precision	90%

• Extraction on long-tail movie websites

Distantly supervised extraction

2013 (Deep ML)

Deep learning

- Use RNN, CNN, attention for RE
- Data programming / Heterogeneous learning
- Revisit DOM extraction

• Annotation-based extraction

- Pros: high precision and recall
- Cons: does not scale--annotation per cluster per website

• Distantly-supervised extraction

- Step 1. Use seed data to automatically annotate
- Step 2. Use the (noisy) annotations for training
- E.g., DeepDive, Knowledge Vault
- OpenIE extraction

- Annotation-based extraction
- Distantly-supervised extraction
- OpenIE extraction

	Vertex (Gulhane et al, 2011)			Ceres			OpenCeres					
	Prec	Rec	F1	#Pred	Prec	Rec	F1	#Pred	Prec	Rec	F1	#Pred
Movie	0.97	0.97	0.97	4	0.97	0.99	0.98	4	0.77	0.68	0.72	18
NBAPlayer	1.00	1.00	1.00	4	0.98	0.98	0.98	4	0.74	0.48	0.58	17
University	0.99	0.98	0.99	4	0.87	0.94	0.90	4	0.65	0.29	0.40	92
Book	0.93	0.93	0.93	5	0.94	0.63	0.70	5	-	-	-	-

Precision much lower

Much more predicates

Movie

- Seed: Director, Writer, Producer, Actor, Release Date, Genre, Alternate Title
- New: Country, Filmed In, Language, MPAA Rating, Set In, Reviewed by, Studio, Metascore, Box Office, Distributor, Tagline, Budget, Sound Mix

NBA Player

- Seed: Height, Weight, Team
- New: Birth Date, Birth Place, Salary, Age, Experience, Position, College, Year Drafted

University

- Seed: Phone Number, Web address, Type (public/private)
- New: Calendar System, Enrollment, Highest Degree, Local Area, Student Services, President

Extraction from semi-structured websites

2013 (Deep ML)

Deep learning

- Use RNN, CNN, attention for RE
- Data programming / Heterogeneous learning
- Revisit DOM extraction

• Which model is the best?

- Logistic regression: best results (20K features on one website)
- Random forest: lower precision and recall
- Deep learning??

Challenges in applying deep learning on extracting semi-structured data

• Web layout is neither 1D sequence nor regular 2D grid, so CNN or RNN does not directly apply

WebTable Extraction [Limaye et al., VLDB'10]

- Model table annotation using interrelated random variables, represented by a probabilistic graphical model
 - Cell text (in Web table) and entity label (in catalog)
 - Column header (in Web table) and type label (in catalog)
 - Column type and cell entity (in Web table)

Extraction from semi-structured data

- WebTables: search, extraction
- DOM tree: wrapper
- induction

2008 (Semi-stru)

WebTable Extraction [Limaye et al., VLDB'10]

Model table annotation using interrelated random variables, represented by a probabilistic graphical model

• Pair of column types (in Web table) and relation (in catalog)

• Entity pairs (in Web table) and relation (in catalog)

Extraction from semi-structured data

- WebTables: search, extraction
- DOM tree: wrapper
- induction

2008 (Semi-stru)

Challenges in applying ML on DX

- Automatic data extraction cannot reach production quality requirement.
 How to improve precision?
- Every web designer has her own whim, but there are underlying patterns across websites. How to learn extraction patterns on different websites, especially for semi-structured sources?
- ClosedIE throws away too much data. How to apply OpenIE on all kinds of data?

Recipe for data extraction

- Problem definition: Extract structure from semi- or un-structured data
- Short answers
 - Wrapper induction
 has high prec/rec
 - Distant supervision is critical for collecting training data

roductic

 DL effective for texts and LR is often effective for semi-stru data

Today's agenda

- Part I. Introduction
- Part II. ML for DI
 - ML for entity linkage
 - ML for data extraction
 - ML for schema alignment
 - ML for data fusion

What is schema alignment?

• Definition: Align schemas and understand which attributes have the same semantics.

SEE RANK

IMDB

Anahí

Actress | Music Department | Soundtrack

Anahi was born in Mexico. She's had roles in Tu y Yo, in which she played a 17 year old girl while she was 13, and Vivo Por Elena, in which she played Talita, a naive and innocent teenager. Anahi lives with her mother and sister name Marychelo. She hopes to become a fashion designer one day, and is currently pursuing a career in singing. See full bio »

Born: May 14, 1982 in Mexico City, Distrito Federal, Mexico

More at IMDbPro » ----

& Contact Info: View manager

WikiData

scription exican singer-songwriter and actress
scription exican singer-songwriter and actress
exican singer-songwriter and actress
description defined
intante, compositora y actriz mexicana
/ edit
3

S1	(name, hPhone, hAddr, oPhone, oAddr)
S2	(name, phone, addr, email)
S3	a: (id, name); b: (id, resPh, workPh)
S4	(name, pPh, pAddr)
S5	(name, wPh, wAddr)

• Mediated schema: a unified and virtual view of

the salient aspects of the domain

S1	(name, hPhone, hAddr, oPhone, oAddr)
S2	(name, phone, addr. email)
S3	a: (id, name); b: (id, resPh, workPh)
S4	(name, pPh, pAddr)
S5	(name, wPh, wAddr)
MS	(n, pP, pA, wP, wA)

• Attribute matching: correspondences between schema attributes

S1	(name, hPhone, hAddr, oPhone, oAddr)
S2	(name, phone, addr, email)
S3	a: (id, name); b: (id, resPh, workPh)
S4	(name, pPh, pAddr)
S5	(name, wPh, wAddr)
MS	(n, pP, pA, wP, wA)
MSAM	MS.n: S1.name, S2.name, S3a.name, MS.pP: S1.hPhone, S3b.resPh, S4.pPh MS.pA: S1.hAddr, S4.pAddr MS.wP: S1.oPhone, S2.phone, MS.wA: S1.oAddr. S2.addr. S5.wAddr

• Schema mapping: transformation between records in different schemas

S1	(name, hPhone, hAddr, oPhone, oAddr)
S2	(name, phone, addr, email)
S3	a: (id, name); b: (id, resPh, workPh)
S4	(name, pPh, pAddr)
S5	(name, wPh, wAddr)
MS	(n, pP, pA, wP, wA)
MSSM (GAV)	MS(n, pP, pA, wP, wA) :- S1(n, pP, pA, wP, wA) MS(n, , wP, wA) :- S2(n, wP, wA, e)

30 years of schema alignment

Description Logics		
 Gav vs. Lav. vs. Glav 	Pay-as-you-go da	ataspaces
 Answering queries using views 	 Probabilistic alignment 	c schema
• warehouse vs. Ell	• • • •	
• 1994 (Early /	ML)	2013 (Deep ML)
1000 (Doss Logics)		
1990 (Desc Logics)	ZUUS (Dalaspaces)	\bullet
Semi-Aut • Lea • Sch • Dat	o mapping rning to match ema mapping: Clio a exchange	 Logic & Deep learning Collective disc. by PSL Universal schema

Early ML models [Rahm and Bernstein, VLDBJ'2001] **Schema Matching Approaches** Combining matchers Individual matcher approaches Schema-only based Instance/contents-based Hybrid matchers Composite matchers ~2000 (Early ML) Element-level Structure-level Element-level Manual Automatic composition composition Constraint-Constraint-Constraint-Linguistic Linguistic based based based Semi-Auto mapping Learning to match Further criteria: - Match cardinality Schema mapping: Clio Auxiliary information used . Data exchange Name similarity Type similarity Graph IR techniques Description Value pattern and Key properties matching (word frequencies, similarity ranges key terms) Sample approaches Global

Signals: name, description, type, key, graph structure, values

namespaces

Early ML models

[Doan et al., Sigmod'01]

Early ML models

Collective mapping discovery by PSL

[Kimmig et al, ICDE'17]

Step 1. Generate candidate mappings

Universal Schema [Riedel et al., NAACL'13][Yao et al., AKBC'13]

• Attribute matching → Instance inference

- Logic & Deep learning
 - Collective disc. by PSL
 - Universal schema

Relation prediction

Type prediction

Universal Schema [Riedel et al., NAACL'13]

- Attribute matching → Instance inference
- f(e_s, r, e_o) is computed using embeddings;
 the higher, the more likely to be true
- DistMult is a relation embedding model

Limitation: Cannot apply to new entities or relations

Figure 3: The continuous representations for model F, E and DISTMULT. [Toutanova et al., EMNLP'15]

2013 (Deep ML)

Logic & Deep learning

- Collective disc. by PSL
- Universal schema

2013 (Deep ML)

Logic & Deep learning

- Collective disc. by PSL
- Universal schema

• Relation: organizationFoundedBy

Textual Pattern	Count	
SUBJECT subject founder of of OBJECT	12	
SUBJECT co-founded OBJECT	3	
SUBJECT appos co-founder prep of oBJECT	Similarity of phrasos	
SUBJECT coni co-founder prep of bobi OBJECT	Similarity of philases	
SUBJECT with co-founded obj	\rightarrow CNN	
SUBJECT signed signed object	2	
SUBJECT with founders prep of Dobj OBJECT	2	
SUBJECT prep of OBJECT	2	
SUBJECT (msubj one prep of pobj founders prep of pobj O	BJECT 2	
${\scriptstyle SUBJECT} \xleftarrow{nsubj} founded \xrightarrow{dobj} production \xrightarrow{conj} OBJECT$	2	
SUBJECT appos partner with prep founded dobj	duction OBJECT 2	
SUBJECT (pobj by prep co-founded object	1	
SUBJECT of co-founder prep of pobj OBJECT	1	
SUBJECT dep co-founder prep of pobj	. F	
SUBJECT + helped + establish + OBJECT	1	
SUBJECT signed creating dobj	1	

Columnless univ. schema w. CNN

Figure 4: The convolutional neural network architecture for representing textual relations.

Columnless univ. schema w. RNN [Verga et al., ACL'16]

 Similar sequences of context tokens should be embedded similarly

Input :

2013 (Deep ML)

Logic & Deep learning

- Collective disc. by PSL
- Universal schema

Rowless Univ. Schema

[Verga et al., ACL'16]

- Infer relation from a set of observed relations
- Similar to schema mapping w. signals from values

2013 (Deep ML)

Logic & Deep learning

- Collective disc. by PSL
- Universal schema

Rowless univ. schema

[Verga et al., ACL'16]

Rowless & Columnless

2013 (Deep ML)

Logic & Deep learning

- Collective disc. by PSL
- Universal schema

Model	MRR	Hits@10
Entity-pair Embeddings	31.85	51.72
Entity-pair Embeddings-LSTM	33.37	54.39
Attention	31.92	51.67
Attention-LSTM	30.00	53.35
Max Relation	31.71	51.94
Max Relation-LSTM	30.77	54.80

Recall still low

(4)		
Model	MRR	Hits@10
Entity-pair Embeddings	5.23	11.94
Attention	29.75	49.69
Attention-LSTM	27.95	51.05
Max Relation	28.46	48.15
Max Relation-LSTM	29.61	54.19
	14 T	

Similar for new entity pairs

(a)

[Zhang et al., NAACL'19]

[Zhang et al., NAACL'19]

[Zhang et al., NAACL'19]

Models	All data	At least one seen
Rowless Model	0.278	0.282
OpenKI with Dual Att.	0.365	0.419

Table 5: Mean average precision (MAP) of Rowless and OpenKI on ReVerb + Freebase (/film) dataset.

Consider neighbors help

[Zhang et al., NAACL'19]

Schema mapping vs. universal schema

	Schema matching	Universal schema
Granularity Column-level decision		Cell-level decision
Expressiveness	Mainly 1:1 mapping	Allow overlap, subset/superset, etc.
Signals	Name, description, type, key, graph structure, values	Values
Results	Accu: 70-90%	MRR=~0.3, Hits@10=~0.5
Community	Database	NLP

Challenges in applying deep learning on SM

• How can we combine techs from schema matching and universal schema?

Recipe for schema alignment

- Problem definition: Align attributes with the same semantics
- Short answers
 - Interactive semiautomatic mapping
 - DL-based universal schema revived the field
 - Combine schema matching and universal schema for future

Today's agenda

- Part I. Introduction
- Part II. ML for DI
 - ML for entity linkage
 - ML for data extraction
 - ML for schema alignment
 - ML for data fusion

What is data fusion?

- **Definition:** Resolving conflicting data and verifying facts.
- Example: "OK Google, How long is the Mississippi River?"

Mississippi River Facts - Mississippi National River and Recreation ... https://www.nps.gov/miss/riverfacts.htm *

Nov 14, 2017 - The staff of Itasca State Park at the Mississippi's headwaters suggest the main stem of the river is **2,552 miles** long. The US Geologic Survey has published a number of **2,300 miles**, the EPA says it is **2,320 miles** long, and the Mississippi National River and Recreation Area suggests the river's length is **2,350 miles**.

	Longest manystem rivers of the onneo states								
#•	Name •	Mouth ^[5] +	Length +	Source coordinates ^[11] *	Mouth coordinates ^[11] •	Watershed area ^[12] •	Discharge ^[12] •	States, provinces, and image ^{[5][11]}	
1	Missouri River	Mississippi River	2,341 mi 3,768 km ^[13]	Q 45°55'39"N 111°30'29"W ^[14]	Q 38°48′49″N 90°07′11″W	529,353 mi ² 1,371,017 km ^{2[15]} ‡ ^[n 2]	69,100 ft ³ /s 1,956 m ³ /s [n 3]	Montana ^s , North Dakota, South Dakota, Nebraska, Iow Kansas, Missouri ^m	
2	Mississippi River	Gulf of Mexico	2,202 mi 3,544 km ^[17] [n 4]	47°14'22"N 95°12'29"W ^[18]	© 29°09'04"N 89°15'12"W	1,260,000 mi ² 3,270,000 km ^{2[19]} ‡ ^[n 5]	650,000 ft ³ /s 18,400 m ³ /s	Minnesota ^s , Wisconsin, Iowa, Illinois, Missouri, Kentucky, Tennessee, Arkansas, Mississippi, Louisiane	

The basic setup of data fusion

Source Observations

Source		River	Attribute	Value			
KG		Mississippi River	Length	2,320 mi			
KG		Missouri River	Length	2,341 mi			
Wikipedia		Mississippi River	Length	2,202 mi			
Wikipedia	1	Missouri River	Length	2,341 mi			
USGS		Mississippi River	Length	▶ 2,340 mi			
USGS		Missouri River	Length	2,540 mi			
		Fact	Sou a va	Irce reports alue for a fact			
Conflicting value							

True Facts

River	Attribute	Value
Mississippi River	Length	?
Missouri River	Length	?
	 Fact's true	value

Goal: Find the **latent** true value of facts.

The basic setup of data fusion

Source Observations

Source		River	Attribute	Value				
KG		Mississippi River	Length	2,320 mi				
KG		Missouri River	Length	2,341 mi				
Wikipedia		Mississippi River	Length	2,202 mi				
Wikipedia		Missouri River	Length	2,341 mi				
USGS		Mississippi River	Length	▶ 2,340 mi				
USGS		Missouri River	Length	2,540 mi				
		Fact	Sour a val	ce reports lue for a fact				
Conflicting value								

True Facts

River	Attribute	Value
Mississippi River	Length	?
Missouri River	Length	?
	Fact's true	value

Idea: Use *redundancy* to infer the true value of each fact.

Majority voting for data fusion

Source Observations

Source	River	Attribute	Value
KG	Mississippi River	Length	2,320 mi
KG	Missouri River	Length	2,341 mi
Wikipedia	Mississippi River	Length	2,202 mi
Wikipedia	Missouri River	Length	2,341 mi
USGS	Mississippi River	Length	2,340 mi
USGS	Missouri River	Length	2,540 mi

Majority voting can be limited. What if sources are correlated (e.g., copying)?Idea: Model source quality for accurate results.

True Facts

River	Attribute	Value
Mississippi River	Length	?
Missouri River	Length	2,341

MV's assumptions

- 1. Sources report values independently
- 2. Sources are better than chance.

40 years of data fusion (beyond majority voting)

 Dawid-Skene me Model the Expectation 	odel error-rate of sources on-maximization	 Probabilistic Grap Use of gene Focus on ur 	 Probabilistic Graphical Models Use of generative models Focus on unsupervised learning 			
•	~1996 (Rule-based)	•	2016 (Deep ML)			
1979 (Statistical le	earning) Domain-specific Stra Keep all values Pick a random Take the averag Take the most	37 (Probabilistic) ategies value ge value recent value	 Deep learning Use Restricted Boltzmann Machine; one layer version is equivalent with Dawid-Skene model Knowledge graph embeddings 			

A probabilistic model for data fusion

- **Random variables:** Introduce a *latent random variable* to represent the true value of each fact.
- **Features:** Source observations become features associated with different random variables.
- Model parameters: Weights related to the error-rates of each data source.

$$P(\text{Fact} = v | \text{data}) = \frac{1}{Z} \exp \sum_{s \in \text{Sources } v'} \sum_{s \in \text{Values}} \sigma_S^{v,v'} \cdot 1[S \text{ reports Fact} = v']$$
Normalizing constant
$$\sigma_S^{v,v'} = \log \left(\frac{\text{Error-rate of Source } S}{1 - \text{Error-rate of Source } S} \right)$$

$$Error-rate = \text{probability that a source } provides \text{ value } v' \text{ instead of value } v$$

error-rate scores

The challenge of training data

- How much data do we need to train the data fusion model?
- **Theorem:** We need a number of labeled examples proportional to the number of sources [Ng and Jordan, NIPS'01]
- Model parameters: Weights related to the error-rates of each data source.

But the number of sources can be in the thousands or millions and training data is limited!

Idea: Leverage redundancy and use unsupervised learning.

The Dawid-Skene Algorithm [Dawid and Skene, 1979]

Iterative process to estimate data source error rates

- Initialize "inferred" true value for each fact (e.g., use majority vote)
- 2. Estimate **error rates** for workers (using "inferred" true values)
- 3. Estimate **"inferred" true values** (using error rates, weight source votes according to quality)
- 4. Go to Step 2 and iterate until convergence

Assumptions: (1) average source error rate < 0.5, (2) dense source observations, (3) conditional independence of sources, (4) errors are uniformly distributed across all instances.

Probabilistic Graphical Models

• Bayesian Networks (BNs)

Local Markov Assumption: A variable X is independent of its non-descendants given its parents (and *only* its parents).

• Recipe for BNs

Set of random variables X Directed acyclic graph (each X[i] is a vertex) Conditional probability tables P(X |Parents(X))

• Joint distribution: Factorizes over conditional probability tables

Probabilistic Graphical Models

• Where do independence assumptions come from?

Causal structure captures domain knowledge

- The flu causes sinus inflammation
- Allergies *also* cause sinus inflammation
- Sinus inflammation causes a runny nose
- Sinus inflammation causes headaches

Flu

R.N.

S.I.

All.

Н

Probabilistic Graphical Models

Factored joint distribution

[Example by Andrew McCallum]

Probabilistic Graphical Models for data fusion

Prior truth [Zhao et al., VLDB 2012] probability Source Quality

Setup: Identify true

source claims

Entity (Movie)	Attribute (Cast)	Source
Harry Potter	Daniel Radcliffe	IMDB
Harry Potter	Emma Waston	IMDB
Harry Potter	Rupert Grint	IMDB
Harry Potter	Daniel Radcliffe	Netflix
Harry Potter	Daniel Radcliffe	BadSource.com
Harry Potter	Emma Waston	BadSource.com
Harry Potter	Johnny Depp	BadSource.com
Pirates 4	Johnny Depp	Hulu.com
	•••	

Extensive work on modeling source observations and source interactions to address limitations of basic Dawid-Skene.

Probabilistic Graphical Models for data fusion

[Zhao et al., VLDB 2012]

Modeling both source quality and

extractor accuracy

[Dong et al., VLDB 2015]

Extensive work on modeling source observations and source interactions to address limitations of basic Dawid-Skene.

Probabilistic Graphical Models for data fusion

Modeling source dependencies

[Platanios et al., ICML 2016]

Extensive work on modeling source observations and source interactions to address limitations of basic Dawid-Skene.

PGMs in data fusion [Li et al., VLDB'14]

Category	Method	#Providers	Source trustworthiness	Item trustworthiness	Value Popularity	Value similarity	Value formatting	Copying
Baseline	Vote	X						
	HUB	X	X					
Web-link	AvgLog	X	X					
based	INVEST	X	X					
	POOLEDINVEST	X	X					
	2-ESTIMATES	X	X					
IR based	3-ESTIMATES	X	X	X				
	COSINE	X	X					
	TRUTHFINDER	X	X			X		
Decesies based	ACCUPR	X	X			200.00		
Bayesian based	POPACCU	X	X		X			
	ACCUSIM	X	X			x		
	ACCUFORMAT	X	X	-		x	x	
Copying affected	ACCUCOPY	X	X			X	X	X

Table 6: Summary of data-fusion methods. X indicates that the method considers the particular evidence.

Bayesian models capture source observations and source interactions.

PGMs in data fusion [Li et al., VLDB'14]

and a second			Stock	S. Martin			Fligh	t	- Martin
Category	Method	prec w. trust	prec w/o. trust	Trust dev	Trust diff	prec w. trust	prec w/o. trust	Trust dev	Trust diff
Baseline	Vote	-	.908	(-)	-	-	.864	=,	-
	HUB	.913	.907	.11	.08	.939	.857	.2	.14
Web-link	AVGLOG	.910	.899	.17	13	.919	.839	.24	.001
based	INVEST	.924	.764	.39	31	.945	.754	.29	12
	POOLEDINVEST	.924	.856	1.29	0.29	.945	.921	17.26	7.45
Constant and	2-ESTIMATES	.910	.903	.15	14	.87	.754	.46	35
IR based	3-ESTIMATES	.910	.905	.16	15	.87	.708	.95	94
	COSINE	.910	.900	.21	17	.87	.791	.48	41
	TRUTHFINDER	.923	.911	.15	.12	.957	.793	.25	.16
	ACCUPR	.910	.899	.14	11	.91	.868	.16	06
	POPACCU	.909	.892	.14	11	.958	.925	.17	11
Bayesian	ACCUSIM	.918	.913	.17	16	.903	.844	.2	09
based	ACCUFORMAT	.918	.911	.17	16	.903	.844	.2	09
	ACCUSIMATTR	.950	.929	.17	16	.952	.833	.19	08
	ACCUFORMATATTR	.948	.930	.17	16	.952	.833	.19	08
Copying affected	ACCUCOPY	.958	.892	.28	11	.960	.943	.16	14

Modeling the quality of data sources leads to improved accuracy.

Discriminative data fusion [SLIMFast Rekatsinas et al., SIGMOD'17]

Limit the informative parameters of the model by using domain knowledge and use semi-supervised learning

Key Idea: Sources have (domain specific) features that are indicative of error rates

Example:

- newly registered similar to existing domain
- traffic statistics
- text quality (e.g., misspelled words, grammatical errors)
- sentiment analysis
- avg. time per task
- number of tasks
- market used

Discriminative data fusion [SLIMFast Rekatsinas et al., SIGMOD'17]

Genomics data: 2.7k sources (articles), 571 objects (genedisease), 4 domain features (year, citation, author, journal)

Data fusion and Deep Learning [Shaham et al., ICML'16]

Theorem: The Dawid and Skene model is *equivalent* to a Restricted Boltzmann Machine (RBM) with a single hidden node.

Ŷ

When the conditional independence assumption of Dawid-Skene does not hold, a better approximation may be obtained from a deeper network.

Data fusion for complex data

Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

A knowledge graph can be encoded as a tensor.

Data fusion for complex data

Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

Neural networks can be used to obtain richer representations.

Data fusion for complex data

Entity and Relation Space

- TransE: score(h,r,t)=-||h+r-t||_{1/2}
- Hot field with increasing interest
 [Survey by Wang et al., TKDE 2017]

Example: Learn embeddings from IMDb data and identify various types of errors in WikiData [Dong et al., KDD'18]

Subject	Relation	Target	Reason
The Moises Padilla Story	writtenBy	César Ámigo Aguilar	Linkage error
Bajrangi Bhaijaan	writtenBy	Yo Yo Honey Singh	Wrong relationship
Piste noire	writtenBy	Jalil Naciri	Wrong relationship
Enter the Ninja	musicComposedBy	Michael Lewis	Linkage error
The Secret Life of Words	musicComposedBy	Hal Hartley	Cannot confirm
		•••	

Challenges in data fusion

- There are few solutions for unstructured data. Mostly work on fact verification [Tutorial by Dong et al., KDD`2018]. Most data Fusion solutions assume data extraction. Can state-of-the art DL help?
- Using training data is key and semi-supervised learning can significantly improve the quality of Data Fusion results. How can one collect training data effectively without manual annotation?
- We have only scratched the surface of what representation learning and deep learning methods can offer. Can deep learning streamline data fusion? What are its limitations?

Recipe for data fusion

- Problem definition: Resolve conflicts and obtain correct values
- Short answers
 - Reasoning about source
 quality is key and works for easy cases
 - Semi-supervised learning has shown
 BIG potential
 - Representation learning provides
 positive evidence for streamlining data
 fusion.

DI & ML as Synergy

• ML for effective DI: AUTOMATION, AUTOMATION, AUTOMATION

- Automating DI tasks with training data
- Ensemble learning and deep learning provide promising solutions
- Better understanding of semantics by neural network

• DI for effective ML: DATA, DATA, DATA

- The software 2.0 stack is data hungry
- Create large-scale training datasets from different sources
- Cleaning of data used for training

DI and ML: A natural synergy

• Data integration is one of the oldest problems in data management

- Transition from logic to probabilities revolutionized data integration
 - Probabilities allow us to reason about inherently noisy data
 - Similar to the AI-revolution in the 80s [https://vimeo.com/48195434]

Modern machine learning and deep learning have the power to streamline DI

Revisit: recipe for data extraction

- Problem definition: Extract structure from semi- or un-structured data
- Short answers
 - Wrapper induction
 has high prec/rec
 - Distant supervision is critical for collecting training data

roductior

 DL effective for texts and LR is often effective for semi-stru data

Revisit: recipe for schema alignment

- Problem definition: Align attributes with the same semantics
- Short answers
 - Interactive semiautomatic mapping
 - DL-based universal schema revived the field
 - Combine schema matching and universal schema for future

Revisit: recipe for entity linkage

- Problem definition: Link references to the same entity
- Short answers
 - RF w. attributesimilarity features
- Production Ready
- DL to handle texts and noises
- End-to-end solution is future work

Recipe for data fusion

- Problem definition: Resolve conflicts and obtain correct values
- Short answers
 - Reasoning about source
 quality is key and works for easy cases
 - Semi-supervised learning has shown
 BIG potential
 - Representation learning provides
 positive evidence for streamlining data
 fusion.

Credits

- Luna Dong Xin
- Theo Rekatsinas