
CS4221
Relational Databases I. Concepts

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

• Refresher

• SQL

• Entity-Relationship model

• Design theory

• Normal forms & functional dependencies

• Boyce-Codd normal form

• 3NF

Today’s agenda

• We use the relational database management system PostgreSQL with
pgAdmin 4 or psql.

PostgreSQL

• A wholesale supplier company operates out of a number of
warehouses. The warehouses maintain stocks for the items sold by
the company. For each item available we record the quantity in
stock in each warehouse.

TPC-C

• Warehouses have a unique identifier, a name and a location
defined by street, city and country.

TPC-C

• Items have a unique identifier, a unique image identifier, a name
and a price.

TPC-C

• For each item available we record the quantity in stock in each
warehouse. If an item is not available in a warehouse, then there is no
entry for this pair. The quantity is always equal to or greater than 1.

TPC-C

• Primary key

• Unique

• Not NULL

• Foreign Key

• Check

Table CHECK constraints, CHECK constraints with general SQL statement and
ASSERTION constraints are not available in database management systems.

Integrity constraints

• We can generate the SQL scripts to create and populate the tables with
Mockaroo (www.mockaroo.com).

Creating tables

• We can use the files:
TPCCSchema.sql,
TPCCItems.sql,
TPCCStocks.sql,
TPCCWarehouses.sql,
TPCCClean.sql,
TPCCQueries.sql.

• Does order matter?

Creating tables

• A point query returns at most one record based on an equality condition.

Querying tables

• A multipoint query returns at several record based on an equality condition.

Querying tables

• A range query returns several records based on inequality conditions on some
attribute(s).

Querying tables

• A prefix match query returns several records based on prefix condition on some
attributes.

Querying tables

• A extremal query returns several records based on an equlity condition
comparing with an maxium or a minimum.

Querying tables

• An ordering query returns several records in a prescribed order.

Querying tables

• A grouping query partitions the records into groups. It is used to express
aggregate queries that involve aggregate functions (MAX, MIN AVG, SUM etc.).

Querying tables

• A join query combines several tables.

Querying tables

• A natural join query combines several tables on equality of attributes with the
same name.

Querying tables

• A outer join query combines several tables and pads the indicated
(LEFT/RIGHT/FULL) missing values with nulls.

Querying tables

• A nested join query uses the result of a subquery (inner query) in the WHERE or
HAVING clause of an outer query.

Querying tables

• A correlated nested query uses the result of a subquery (inner query) in the
WHERE or HAVING clause of an outer query. The inner query referes to attributes
of the relations in the FROM clause of the outer query.

Querying tables

• There is no theoretical limit on the number of level of nesting. There might be
some in individual systems.

Querying tables

• There can be nested queries in the SELECT and FROM clause.

Querying tables

• Refresher

• SQL

• Entity-Relationship model

• Design theory

• Normal forms & functional dependencies

• Boyce-Codd normal form

• 3NF

Today’s agenda

1. Requirements analysis

• What is stored?

• How to use?

• Who should access the data?

Database design process

1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security, etc.

2. Conceptual design

• A high-level description of the DB

• Sufficiently precise so that tech people can understand

• But not too precise so that non-tech people can’t understand

Database design process

1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security, etc.

This is where Entity/Relations fits in.

3. More

• Logical DB design

• Physical DB design

• Security design

Database design process

1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security, etc.

E/R model & diagrams used

1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security, etc.

MakesProduct

name category

price

Company

name

E/R is a visual syntax for DB design which is precise enough for technical

points, but abstracted enough for non-technical people

Iterative process

E: Entities and Entity Set

Product

name category

price Shapes are important.
Colors are not.

Entities are the individual objects (no associated methods)

Entity sets are collections of similar entities

○ Represented by rectangles

An entity set has attributes
○ Represented by ovals attached to an entity set

Entities vs. Entity Sets

Example:

Product

name category

price

Entity Set

Product

Name: Xbox

Category: Total

Multimedia System

Price: $250

Name: My Little Pony Doll
Category: Toy

Price: $25

Entity

Attribute

Entities are not explicitly
represented in E/R diagrams!

Keys
A key is a minimal set of attributes that uniquely identifies an entity.

Product

name category

price

Denote elements of the
primary key by underlining.

The E/R model forces us to
designate a single primary
key, though there may be
multiple candidate keys

R: Relationships
A relationship is between two entities

○ Represented by diamonds

Product

name category

price

Company

name

Makes

makes

buys
employs

Product

name category

price

Person

address name ssn

Company

stockprice

name

What is a relationship?

A mathematical definition:

○ Let A, B be sets

■ A={1,2,3}, B={a,b,c,d}
2

3

a

b

c

d

A= 1
B=

What is a relationship?

A mathematical definition:

○ Let A, B be sets

■ A={1,2,3}, B={a,b,c,d}

○ A x B (the cross-product) is the set of all pairs (a,b)

■ A x B = {(1,a), (1,b), (1,c), (1,d), (2,a), (2,b),
(2,c), (2,d), (3,a), (3,b), (3,c), (3,d)}

What is a relationship?

A mathematical definition:

○ Let A, B be sets

■ A={1,2,3}, B={a,b,c,d},

○ A x B (the cross-product) is the set of all pairs (a,b)

■ A x B = {(1,a), (1,b), (1,c), (1,d), (2,a), (2,b),
(2,c), (2,d), (3,a), (3,b), (3,c), (3,d)}

○ We define a relationship to be a subset of A x B

■ R = {(1,a), (2,c), (2,d), (3,b)}

2

3

b

c

d

1
B=

aA=

What is a relationship?

A mathematical definition:

○ Let A, B be sets

○ A x B (the cross-product) is the set of all pairs

○ A relationship is a subset of A x B

Makes is relationship: it is a subset of Product x
Company:

2

3

b

c

d

1
B=

aA=

Makes CompanyProduct

What is a relationship?

MakesProduct

name category

price

Company

name

A relationship between entity sets P and C is a
subset of all possible pairs of entities in P and C,
with tuples uniquely identified by P and C’s keys

name category price

Gizmo Electronics $9.99

GizmoLite Electronics $7.50

Gadget Toys $5.50

name

GizmoWorks

GadgetCorp

ProductCompany
C.name P.name P.category P.price

GizmoWorks Gizmo Electronics $9.99

GizmoWorks GizmoLite Electronics $7.50

GizmoWorks Gadget Toys $5.50

GadgetCorp Gizmo Electronics $9.99

GadgetCorp GizmoLite Electronics $7.50

GadgetCorp Gadget Toys $5.50

Company C × Product P

C.name P.name

GizmoWorks Gizmo

GizmoWorks GizmoLite

GadgetCorp Gadget

Makes
MakesProduct

name category

price

Company

name

A relationship between entity sets P and C is a
subset of all possible pairs of entities in P and C,
with tuples uniquely identified by P and C’s keys

What is a relationship?

There can only be one relationship for every unique
combination of entities

This also means that the relationship is
uniquely determined by the keys of its entities

Example: the “key” for Makes (to right) is
{Product.name, Company.name}

This follows from our
mathematical definition of
a relationship- it’s a SET!

MakesProduct

name category

price

Company

namesince

KeyMakes = KeyPro duct ∪ KeyCompany

What is a relationship?

Product

name category

price

Company

name

Makes

since

Relationships may have attributes as well.

For example: “since”
records when
company started
making a product

Note: “since” is
implicitly unique
per pair here! Why?

Note #2: Why
not “how
long”?

Relationships and attributes

Decision: relationship vs. entity?

Q: What does this say?

A: A person can only buy a specific product once (on one date)

PurchasedProduct

name category

price

Person

name

date

Modeling something as a relationship makes it unique;
what if not appropriate?

What about this way?

Now we can have multiple purchases per product, person pair!

Product

name category

price

Person

name

date

Purchase

quantityPID#

ProductOf BuyerOf

We can always use a new entity instead of a relationship. For
example, to permit multiple instances of each entity combination!

Decision: relationship vs. entity?

Multiplicity of binary relationships
Relationships can be one-one, one-many, or many-many

An arrow indicates “related to at most one entity”
○ Different than “exactly one”

A product has at most
one company

A product has at most one
company, and a company
has at most one product

Makes CompanyProduct

Makes CompanyProduct

What kind of relationship does
the bottom diagram imply?

1
2

3

a

b

c

d

One-to-one:

1
2

3

a

b

c

d

Many-to-one:

1
2

3

a

b

c

d

One-to-many:

1
2

3

a
b

c

d

Many-to-many:

Multiplicity of binary relationships

How do we model a purchase relationship between
buyers, products and stores?

Purchase

Product

Person

Store

Multiway relationships

Q: What does the arrow mean ?

Arrows in multiway relationships

Purchase

Product

Person

Store

Arrow: if we select one entity
from each of the other entity
sets in the relationship, those
entities are related to at most
one entity in E.

Q: Can a person purchase two different products the same store?
Q: Can a person purchase the same product at two different stores?

For each (product,
store), there is at most
one person who have
made that purchase

Arrows in multiway relationships

A: Cannot. This is the best approximation.
(Why only approximation ?)

Product

Person

StorePurchase

Q: How do we say that every person shops in at most one store ?

Converting multi-way relationships to binary

Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date ● Create a
connecting entity set
● Introduce many-
one relationships

Purchase

Product

Person

Store

Decision: multi-way or new entity + binary?

Should we use a single multi-way relationship or a new entity with
binary relations?

Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

Purchase

Product

Person

Store

(A) Multi-way Relationship (B) Entity + Binary

(A) Multi-way Relationship (B) Entity + Binary

• (A) is useful when a relationship really is between multiple entities
- Ex: A three-party legal contract

Purchase

Product

Person

Store
Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

Decision: multi-way or new entity + binary?

(A) Multi-way Relationship (B) Entity + Binary

• Covered earlier: (B) is useful if we want to have multiple instances of the
“relationship” per entity combination

Multiple purchases per
(product, store, person)
combo possible here!

Purchase

Product

Person

Store
Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

Decision: multi-way or new entity + binary?

(A) Multi-way Relationship (B) Entity + Binary

• (B) is also useful when we want to add details (constraints or attributes) to the
relationship
 - “A person who shops in only one store”

We can add more-fine-
grained constraints here!

Purchase

Product

Person

Store
Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

- “How long a person has been shopping at a store”

Decision: multi-way or new entity + binary?

Examples: entity vs. attribute

Should address (A) be
an attribute?

Employee

Addr 1 Addr 2

Address

Street Addr ZIP

Employee

AddrOf

Or (B) be an entity?

Should address (A) be
an attribute?

Employee

Addr 1 Addr 2

How do we handle
employees with multiple
addresses here?

How do we handle addresses
where internal structure of the
address (e.g. zip code, state) is
useful?

Examples: entity vs. attribute

Address

Street Addr ZIP

Employee

AddrOf

In general, when we want to record several
values, we choose new entity

Employee

Addr 1 Addr 2

Should address (A) be
an attribute?

Or (B) be an entity?

Examples: entity vs. attribute

Constraints in E/R Diagrams
Commonly used constraints are:

Keys: Implicit constraints on uniqueness of entities
• Ex: An SSN uniquely identifies a person

Single-value constraints:
• Ex: a person can have only one father

Referential integrity constraints: Referenced entities must exist
• Ex: if you work for a company, it must exist in the database

Participation constraints:
• Ex: every student must enroll in a class

Other constraints:
• Ex: peoples’ ages are between 0 and 150

Recall
FOREIGN
KEYs!

Participation constraints: partial v. total

makesProduct Company

Are there products made by no company?
Companies that don’t make a product?

makesProduct Company

Double line indicates total participation (i.e. here: all
products are made by a company)

Key constraints

address name ssn

Person

Product

name category

price

Underline keys:

Note: no formal
way to specify
multiple keys in
E/R diagrams…

Single value constraints

makes

v. s.

makes

See previous section!

Referential integrity constraints

CompanyProduct makes

CompanyProduct makes

Each product made by at most one company.
Some products made by no company?

A rounded arrow to F means
○ The relationship is

many-one and
○ The entity of set F

related to an entity of E
must exist

Each product made by exactly one company.

Degree constraints
● Limit the number of entities connected to any one entity of the related entity set

○ Arrow is same as “<=1” constraint
○ Rounded arrow is same as “=1” constraint

Every movie can be
connected to at
most 10 stars

MoviesStars Stars-In
<= 10

From E/R diagrams to relational schema

● Key concept:

Both Entity sets and Relationships become relations (tables in RDBMS)

name price category

Gizmo1 99.99 Camera

Gizmo2 19.99 Edible

Product

category

name

Product

An entity set becomes a relation
(multiset of tuples / table)

– Each tuple is one entity

– Each tuple is composed of the
entity’s attributes, and has the
same primary key

From E/R diagrams to relational schema
price

name price category

Gizmo1 99.99 Camera

Gizmo2 19.99 Edible

Product

price category

name

Product

CREATE TABLE Product(
name CHAR(50) PRIMARY KEY,
price DOUBLE,
category VARCHAR(30)

)

From E/R diagrams to relational schema

name firstname lastname date

Gizmo1 Bob Joe 01/01/15

Gizmo2 Joe Bob 01/03/15

Gizmo1 JoeBob Smith 01/05/15

Purchased

A relation between entity sets A1, …, AN also
becomes a multiset of tuples / a table

– Each row/tuple is one relation, i.e. one
unique combination of entities (a1,…,aN)

– Each row/tuple is
• composed of the union of the entity sets’ keys
• has the union of the entity sets’ keys as primary

key
• has the entities’ primary keys as foreign keys

PurchasedProduct

name category

price

Person

firstnamedate lastname

From E/R diagrams to relational schema

name firstname lastname date

Gizmo1 Bob Joe 01/01/15

Gizmo2 Joe Bob 01/03/15

Gizmo1 JoeBob Smith 01/05/15

Purchased

PurchasedProduct

name category

price

Person

firstnamedate lastname

CREATE TABLE Purchased(
name CHAR(50),
firstname CHAR(50),
lastname CHAR(50),
date DATE,
PRIMARY KEY (name, firstname, lastname),
FOREIGN KEY (name)

REFERENCES Product,
FOREIGN KEY (firstname, lastname)

REFERENCES Person
)

From E/R diagrams to relational schema

Note: total participation vs. referential integrity

CompanyProduct makes

Each product made by exactly one company;
the company involved must exist in our database.

makesProduct Company

All products need to be in the makes relationship

Combining relations
● If E is connected to F through a many-one relationship R, combine E and R

○ Attributes of E and R, and the key attributes of F

● Advantage: querying one relation is faster than querying several relations

title year

length genre

name

address

MoviesStudios Owns
Owns(title, year, length,

genre, studioName)

Combining relations
● Why only consider many-one relationships?

○ Otherwise, the combined relation is not good design and may contain anomalies

This information is redundant, and
updating one tuple may leave the
other one incorrect (update anomaly)

title year

length genre

name

address

MoviesStudios Owns

• Refresher

• SQL

• Entity-Relationship model

• Design theory

• Normal forms & functional dependencies

• Boyce-Codd normal form

• 3NF

Today’s agenda

Design theory for relational databases
There are many ways to design a relational database schema

○ E.g., we just learned how to use an E/R diagram
It is also common to improve the initial schema (esp. eliminating redundancy)

○ Often, the problem is combining too much into one relation
Fortunately, there is a well-developed design theory for good schema design

○ Functional dependencies, normalization, multivalued dependencies
○ One of the reasons Databases are powerful and so widely used

Ideas
High-Level

Design

Relational

Database

Schema

Relational

DBMS

Improve schema

Normal forms

● 1st Normal Form (1NF) = All tables are flat

● 2nd Normal Form = disused

● Boyce-Codd Normal Form (BCNF)

● 3rd Normal Form (3NF)

● 4th and 5th Normal Forms = see textbooks

DB designs based

on functional

dependencies,

intended to prevent

data anomalies

1st Normal Form (1NF)

Violates 1NF.

1NF Constraint: Types must be atomic!

In 1st NF

Student Courses

Mary {CS145,CS229}

Joe {CS145,CS106}

… …

Student Courses

Mary CS145

Mary CS229

Joe CS145

Joe CS106

Data anomalies

If every course is

in only one room,

contains

redundant

information!

A poorly designed database causes anomalies:

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

Data anomalies

If we update the room

number for one tuple,

we get inconsistent

data = an update

anomaly

Student Course Room

Mary CS145 B01

Joe CS145 C12

Sam CS145 B01

..

A poorly designed database causes anomalies:

If everyone drops the class, we lose

what room the class is in!

= a delete anomaly

Student Course Room

..

Data anomalies
A poorly designed database causes anomalies:

Similarly, we can’t

reserve a room

without students

= an insert anomaly

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

… CS229 C12

Data anomalies
A poorly designed database causes anomalies:

Goal: develop theory to understand why this design may be

better and how to find this decomposition…

Eliminate anomalies by

decomposing relations.

• Redundancy?
• Update anomaly?
• Delete anomaly?

• Insert anomaly?

Student Course

Mary CS145

Joe CS145

Sam CS145

.. ..

Course Room

CS145 B01

CS229 C12

Data anomalies

Functional dependency (FD)
Definition: if two tuples of R agree on all the attributes A1, A2, …, An, they must also

agree on (or functionally determine) B1, B2, …, Bm

● Denoted as A1A2 … An → B1B2 ... Bm

t

u

If t and u

agree

here,

they must

agree here

A->B means that

“whenever two tuples agree on

A then they agree on B.”

A’s B’s

Splitting/combining rule
● Splitting/combining can be applied to the right sides of FD’s

A1A2 … An → B1B2 … Bm

A1A2 … An → B1, A1A2 … An → B2, …, A1A2 … An → Bm

Splitting rule Combining rule

Splitting/combining rule
● For example,

title, year → length, genre, studioName

title, year → length

title, year → genre

title, year → studioName

Splitting rule

● Splitting rule does not apply to the left sides of FD’s

title, year → length

title → length

year → length

Functional dependencies as constraints

Note: The FD
{Course} -> {Room}

holds on this instance

A functional dependency is a
form of constraint

• Holds on some instances
(but not others) – can check
whether there are violations

• Part of the schema, helps
define a valid instance

Recall: an instance of a schema is a

multiset of tuples conforming to that

schema, i.e. a table

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

Functional dependencies as constraints

However, cannot prove

that the FD {Course} ->

{Room} is part of the

schema

Note that:

• You can check if an FD is
violated by examining a single
instance;

• However, you cannot prove that
an FD is part of the schema by
examining a single instance.

• This would require checking

every valid instance

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

Trivial functional dependencies

A constraint is trivial if it holds for every possible instance of the relation.

t

u

C’s
A’s

B’s

If t and u

agree on

theAs

Then they

must agree

on the Bs

And surely they

agree on the Cs

Trivial FDs:

A1A2 … An → B1 B2 … Bm such that

{B1, B2, … Bm} ⊆ {A1,A2, … ,An}

Trivial dependency rule:

A1A2 … An → B1 B2 … Bm is equivalent

to A1A2 … An → C1 C2 … Ck where the

C’s are the B’s that are not also

A’s

FDs for relational schema design

High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema

1. One which minimizes possibility of anomalies

This part can be

tricky!

There can be a large number of FDs…

Let’s start with this problem:

Given a set of FDs, F = {f1,…fn}, does an FD g hold?

Finding functional dependencies

Three simple rules called Armstrong’s Rules.

1. Reflexivity,

2. Augmentation,

3. Transitivity

Armstrong’s axioms

1. Reflexivity:

If Y is a subset of X, then X → Y

2. Augmentation:

If X → Y, then XZ → YZ for any Z

3. Transitivity:

If X → Y and Y → Z, then X → Z

You can derive any FDs that follows from a given set using these axioms:

This means that a set of attributes

always determines a subset of itself

This means we can add the same

attributes to both sides of a functional

dependency.

This allows us to chain functional

dependencies.

● Does AB → D follow from the FDs below?

Armstrong’s axioms

AB → C

BC → AD

D → E

CF → B

1. AB → C (given)

2. BC → AD (given)

● Does AB → D follow from the FDs below?

AB → C

BC → AD

D → E

CF → B

1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

Armstrong’s axioms

● Does AB → D follow from the FDs below?

AB → C

BC → AD

D → E

CF → B

1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

4. AB → AD (Transitivity on 2,3)

Armstrong’s axioms

● Does AB → D follow from the FDs below?

AB → C

BC → AD

D → E

CF → B

1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

4. AB → AD (Transitivity on 2,3)

5. AD → D (Reflexivity)

Armstrong’s axioms

● Does AB → D follow from the FDs below?

AB → C

BC → AD

D → E

CF → B

1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

4. AB → AD (Transitivity on 2,3)
5. AD → D (Reflexivity)
6. AB → D (Transitivity on 4,5)

Can we find an algorithmic way to do this?

Armstrong’s axioms

Closure of attributes

AB → C

BC → AD

D → E

CF → B

{A, B}+

A, B

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1,…, An}+ is the set of attributes B where

{A1, …, An} → B follows from the FDs in F

AB → C

BC → AD

D → E

CF → B

{A, B}+

A, B, C

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1,…, An}+ is the set of attributes B where

{A1, …, An} → B follows from the FDs in F

Closure of attributes

AB → C

BC → AD

D → E

CF → B

{A, B}+

A, B, C, D

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1,…, An}+ is the set of attributes B where

{A1, …, An} → B follows from the FDs in F

Closure of attributes

AB → C

BC → AD

D → E

CF → B

{A, B}+

A, B, C, D, E

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1,…, An}+ is the set of attributes B where

{A1, …, An} → B follows from the FDs in F

Closure of attributes

AB → C

BC → AD

D → E

CF → B

{A, B}+

A, B, C, D, E
Cannot be expanded

further, so this is a closure

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1,…, An}+ is the set of attributes B where

{A1, …, An} → B follows from the FDs in F

Closure of attributes

Start with X = {A1, …, An} and set of FDs F.

Repeat until X doesn’t change; do:

if {B1, …, Bn} → C is entailed by F

and {B1, …, Bn} ⊆ X

then add C to X.

Return X as X+

The algorithm

○ only produces true FDs

○ Discovers all true FDs

Closure algorithm

Initial set of

attributes

Closure

Helps to split the FD’s of F so each

FD has a single attribute on the right

Why do we need the closure?
With closure we can find all FD’s easily

To check if X → A

1. Compute X+

2. Check if A  X+

Note here that X is a set of

attributes, but A is a single attribute.

Why does considering FDs of this

form suffice?

Recall the split/combine rule:
X → A1, …, X → An

implies

X → {A1, …, An}

Using closure to infer ALL FDs
{A,B} → C
{A,D} → B
{B} → D

Example:
Given F =

Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}
{B}+ = {B,D}
{C}+ = {C}
{D}+ = {D}
{A,B}+ = {A,B,C,D}
{A,C}+ = {A,C}
{A,D}+ = {A,B,C,D}
{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D} {B,C,D}+ = {B,C,D}
{A,B,C,D}+ = {A,B,C,D}

Step 1: Compute X+, for every set of attributes X:

{A,B} → C
{A,D} → B
{B} → D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D},
{A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X → Y, s.t. Y X+ and X Y =:

Using closure to infer ALL FDs

Step 1: Compute X+, for every set of attributes X:

{A,B} → C
{A,D} → B
{B} → D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D},
{A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X → Y, s.t. Y X+ and X Y =:

{A,B} → {C,D}, {A,D} → {B,C},
{A,B,C} → {D}, {A,B,D} → {C},
{A,C,D} → {B}

Y is in the

closure of X

The FD

X→Y is

non-trivial

Using closure to infer ALL FDs

Keys and Superkeys

A superkey is a set of attributes A1, …, An

s.t.

for any other attribute B in R,

we have {A1, …, An} → B

A key is a minimal

superkey

i.e. all attributes are

functionally

determined by a

superkey

This means that no subset of a key

is also a superkey

(i.e., dropping any attribute from the

key makes it no longer a superkey)

Q: What are superkeys and keys in the following relation?

{title, year, length, starName} is a superkey

{title, year, starName} is a key

{title, year} is not a key because title year → starName is not an FD

{year, starName} is not a key because year starName → title is not an FD

{title, starName} is not a key because title starName → year is not an FD

title year length genre studioName starName

Ponyo 2008 103 anime Ghibli Yuria Nara

Ponyo 2008 103 anime Ghibli Hiroki Doi

Oldboy 2003 120 mystery Show East Choi Min-Sik

Keys and Superkeys

For each set of attributes X

1. Compute X+

2. If X+ = set of all attributes then X is a superkey

3. If X is minimal, then it is a key

Keys and Superkeys

Product(name, price, category, color)

{name, category} → price
{category} → color

What is a key?

Example

Example
Product(name, price, category, color)

{name, category} → price
{category} → color

{name, category}+ = {name, price, category, color}

 = the set of all attributes

 ⟹ this is a superkey

⟹ this is a key, since neither name nor category alone is a superkey

• Refresher

• SQL

• Entity-Relationship model

• Design theory

• Normal forms & functional dependencies

• Boyce-Codd normal form

• 3NF

Today’s agenda

Back to conceptual design

Now that we know how to find FDs, it’s a straight-forward process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables

until no more bad FDs

3. When done, the database schema is normalized

Recall: there are several normal forms…

Boyce-Codd normal form (BCNF)

Main idea is that we define “good” and “bad” FDs as follows:

○ X → A is a “good FD” if X is a (super)key

■ In other words, if A is the set of all attributes

○ X → A is a “bad FD” otherwise

We will try to eliminate the “bad” FDs!

Why does this definition of “good” and “bad” FDs make sense?

If X is not a (super)key, it functionally determines some of the attributes; therefore,

those other attributes can be duplicated

○ Recall: this means there is redundancy

○ And redundancy like this can lead to data anomalies!

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

Boyce-Codd normal form (BCNF)

BCNF is a simple condition for removing anomalies from relations:

In other words: there are no “bad” FDs

A relation R is in BCNF if:

if {A1, ..., An} → B is a non-trivial FD in R

then {A1, ..., An} is a superkey for R

Equivalently: ∀ sets of attributes X, either (X+ = X) or (X+ = all attributes)

Boyce-Codd normal form (BCNF)

Example

What is the key?

{SSN, PhoneNumber}

SSN → Name,City

⟹Not in BCNF

This FD is bad

because it is not

a superkey

Name SSN PhoneNumber City

Fred 123-45-6789 206-555-1234 Seattle

Fred 123-45-6789 206-555-6543 Seattle

Joe 987-65-4321 908-555-2121 Westfield

Joe 987-65-4321 908-555-1234 Westfield

Example

Let’s check anomalies:

• Redundancy ?

• Update ?

• Delete ?

SSN → Name,City

Now in BCNF!

1

1

7

This FD is now

good because it

is the key

Name SSN City

Fred 123-45-6789 Seattle

Joe 987-65-4321 Madison

SSN PhoneNumber

123-45-6789 206-555-1234

123-45-6789 206-555-6543

987-65-4321 908-555-2121

987-65-4321 908-555-1234

Any two-attribute relation is in BCNF

○ If there are no nontrivial FDs, BCNF holds

○ If A → B holds, but not B → A, the only nontrivial FD has A (i.e., the key) on the left

○ Symmetric case when B → A holds, but not A → B

○ If both A → B and B → A hold, any nontrivial FD has A or B (both are keys) on the left

Employee(empId, ssn) empId → ssn

ssn → empId

Boyce-Codd normal form (BCNF)

BCNF decomposition algorithm
BCNFDecomp(R):
• Find an FD X → Y that violates

BCNF (X and Y are sets of

attributes)

• Compute the closure X+

• let Y = X+ - X, Z = (X+)C

Let Y be the attributes that

X functionally determines

(+ that are not in X)

And let Z be the

complement, the other

attributes that it doesn’t

BCNF decomposition algorithm
BCNFDecomp(R):
• Find an FD X → Y that violates

BCNF (X and Y are sets of

attributes)

• Compute the closure X+

• let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

X ZY

Split into one relation (table)

with X plus the attributes

that X determines (Y)…

R1 R2

BCNF decomposition algorithm
BCNFDecomp(R):
• Find an FD X → Y that violates

BCNF (X and Y are sets of

attributes)

• Compute the closure X+

• let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

• Recursively decompose R1 and R2

X ZY

And one relation with X plus

the attributes it does not

determine (Z)

R1 R2

Example: BCNF decomposition

● In general, there can be multiple decompositions

R(title,year,studioName,president,presAddr) title year → studioName

studioName → president

president → presAddr

R’s FDs

● In general, there can be multiple decompositions

title year → studioName

studioName → president

president → presAddr

R’s FDs

BCNF

violations

Key

R(title,year,studioName,president,presAddr)

Example: BCNF decomposition

● In general, there can be multiple decompositions

R2(title,year,studioName)R1(studioName,president,presAddr)

title year → studioName

studioName → president

president → presAddr

R’s FDs

BCNF

violations

Key

R(title,year,studioName,president,presAddr)

Example: BCNF decomposition

● In general, there can be multiple decompositions

R2(title,year,studioName)

studioName → president

president → presAddr

R1’s FDs

BCNF

violation

Key

R(title,year,studioName,president,presAddr)

R1(studioName,president,presAddr)

Example: BCNF decomposition

● In general, there can be multiple decompositions

R2(title,year,studioName)

studioName → president

president → presAddr

R1’s FDs

BCNF

violation

Key

R3(president,presAddr) R4(president,studioName)

R(title,year,studioName,president,presAddr)

R1(studioName,president,presAddr)

Q: Is this algorithm guaranteed to terminate successfully?

Example: BCNF decomposition

Recap: decompose to remove redundancies

1. We saw that redundancies in the data (“bad FDs”) can lead to data

anomalies

2. We developed mechanisms to detect and remove redundancies by

decomposing tables into BCNF

1. BCNF decomposition is standard practice- very powerful & widely used!

3. However, sometimes decompositions can lead to more subtle unwanted

effects…

When does this happen?

Recovering information from a decomposition

R1 = the projection of R on A1, ..., An, B1, ..., Bm

R2 = the projection of R on A1, ..., An, C1, ..., Cp

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Recovering information from a decomposition

Name Price

Gizmo 19.99

OneClick 24.99

Gizmo 19.99

i.e. it is a Lossless

decomposition

Sometimes a

decomposition is

“correct”Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

Recovering information from a decomposition

What’s wrong

here?

However sometimes

it isn’t
Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera

19.99 Camera

Lossless decompositions

A decomposition R to (R1, R2) is lossless if R = R1 Join R2

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Lossless decompositions

BCNF decomposition is always lossless. Why?

Note: don’t need

A1, ..., An → C1, ..., Cp

If A1, ..., An → B1, ..., Bm

Then the decomposition is lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

A Problem with BCNF
Unit → Company
Company,Product → Unit

We do a BCNF decomposition
on a “bad” FD:
{Unit}+ = {Unit, Company}

Unit → Company

We lose the FD Company,Product → Unit!!

Unit Company Product

… … …

Unit Company

… …

Unit Product

… …

Why is that a problem?

No problem so far.

All local FD’s are

satisfied.

Let’s put all the

data back into a

single table again:

Unit → Company

Violates the FD Company,Product → Unit!!

Unit Company

Galaga99 UW

Bingo UW

Unit Product

Galaga99 Databases

Bingo Databases

Unit Company Product

Galaga99 UW Databases

Bingo UW Databases

The problem with BCNF

● We started with a table R and FDs F

● We decomposed R into BCNF tables R1, R2, …

with their own FDs F1, F2, …

● We insert some tuples into each of the relations—which satisfy their local FDs

but when reconstruct it violates some FD across tables!

Practical Problem: To enforce FD, must

reconstruct R—on each insert!

Desirable properties of decomposition

In general, we want the decomposition to have the following properties

(1) Elimination of anomalies

(2) Recoverability of information: can we recover the original relation by joining?

(3) Preservation of dependencies: if we check the projected FD’s in the decomposed relations,

does the reconstructed original relation satisfy the original FD’s?

● BCNF gives (1) and (2), but not necessarily (3)

● 3NF gives (2) and (3), but not necessarily (1)

● In fact, there is no way to get all three at once!

Third normal form (3NF)

Example:

○ The keys are AB and AC

○ B → C is a BCNF violation, but not

a 3NF violation because C is prime

(part of the key AC)

A relation R is in 3NF if:

For every non-trivial FD A1, ..., An → B, either

• {A1, ..., An} is a superkey for R

• B is a prime attribute (i.e., B is part of some candidate key of R)

R(A,B,C)

AC → B
B → C

3NF decomposition algorithm
3NFDecomp(R, F):
• Find minimal basis for F, say G

• For each FD X → A in G, if there is no relation that contains XA,

create a new relation (X, A)

• Eliminate any relation that is a proper subset of another relation.

• If none of the resulting schemas are superkeys,

add one more relation whose schema is a key for R

R(A,B,C,D,E)

AB → C
C → B
A → D

R1(A,B,C)

R2(B,C)

R3(A,D)
ABE,ACE

Keys:

Minimal basis:

R4(A,B,E)

Minimal basis generation

Input: F = {A → AB, AB → C}

1. Split FD’s so that they have singleton right sides

G = {A → B, A → A, AB → C}

2. Remove trivial FDs

G = {A → B, AB → C}

3. Minimize the left sides of each FD

G = {A → B, A → C}

4. Remove redundant FDs

G = {A → B, A → C}

Given a set of FD’s F, any set of FD’s

equivalent to F is a basis for F

For each FD X → A in F:

For each attribute B in X:

If (X - {B})+ contains A,

remove B from X.

1

3

9

1

4

0

BCNF vs 3NF

● Given a non-trivial FD X → B (X is a set of attributes)

○ BCNF: X must be a superkey

○ 3NF: X must be a superkey or B is prime

● Use 3NF over BCNF if you need dependency preservation

● However, 3NF may not remove all redundancies and anomalies

3NF

BCNF

F: B → C, AC → B

3NF relation:

Can have redundancy and update anomalies

Can have deletion anomalies

Further readings
4NF: Remove Multi-value dependency

redundancies

3NF

BCNF

4NF

Property 3NF BCNF 4NF

Lossless join Yes Yes Yes

Eliminates FD redundancies No Yes Yes

Eliminates MVD redundancies No No Yes

Preserves FD’s Yes No No

Preserves MVD’s No No No

Summary
Good schema design is important

○ Avoid redundancy and anomalies

○ Functional dependencies

Normal forms describe how to remove this redundancy by decomposing relations

○ BCNF gives elimination of anomalies and lossless join

○ 3NF gives lossless join and dependency preservation

BCNF is intuitive and most widely used in practice

	Slide 1: CS4221 Relational Databases I. Concepts
	Slide 2: Today’s agenda
	Slide 3: PostgreSQL
	Slide 4: TPC-C
	Slide 5: TPC-C
	Slide 6: TPC-C
	Slide 7: TPC-C
	Slide 8: Integrity constraints
	Slide 9: Creating tables
	Slide 10: Creating tables
	Slide 11: Querying tables
	Slide 12: Querying tables
	Slide 13: Querying tables
	Slide 14: Querying tables
	Slide 15: Querying tables
	Slide 16: Querying tables
	Slide 17: Querying tables
	Slide 18: Querying tables
	Slide 19: Querying tables
	Slide 20: Querying tables
	Slide 21: Querying tables
	Slide 22: Querying tables
	Slide 23: Querying tables
	Slide 24: Querying tables
	Slide 25: Today’s agenda
	Slide 26: Database design process
	Slide 27: Database design process
	Slide 28: Database design process
	Slide 29: E/R model & diagrams used
	Slide 30: E: Entities and Entity Set
	Slide 31: Entities vs. Entity Sets
	Slide 32: Keys
	Slide 33: R: Relationships
	Slide 34: name
	Slide 35: What is a relationship?
	Slide 36: What is a relationship?
	Slide 37: What is a relationship?
	Slide 38: What is a relationship?
	Slide 39: What is a relationship?
	Slide 40: What is a relationship?
	Slide 41: What is a relationship?
	Slide 42: Relationships and attributes
	Slide 43: Decision: relationship vs. entity?
	Slide 44: Decision: relationship vs. entity?
	Slide 45: Multiplicity of binary relationships
	Slide 46: Multiplicity of binary relationships
	Slide 47: Multiway relationships
	Slide 48: Arrows in multiway relationships
	Slide 49: Arrows in multiway relationships
	Slide 50: Converting multi-way relationships to binary
	Slide 51: Decision: multi-way or new entity + binary?
	Slide 52: Decision: multi-way or new entity + binary?
	Slide 53: Decision: multi-way or new entity + binary?
	Slide 54: Decision: multi-way or new entity + binary?
	Slide 55: Examples: entity vs. attribute
	Slide 56: Examples: entity vs. attribute
	Slide 57: Examples: entity vs. attribute
	Slide 58: Constraints in E/R Diagrams
	Slide 59: Participation constraints: partial v. total
	Slide 60: Key constraints
	Slide 61: Single value constraints
	Slide 62: Referential integrity constraints
	Slide 63: Degree constraints
	Slide 64: From E/R diagrams to relational schema
	Slide 65: From E/R diagrams to relational schema
	Slide 66: From E/R diagrams to relational schema
	Slide 67: From E/R diagrams to relational schema
	Slide 68: From E/R diagrams to relational schema
	Slide 69: Note: total participation vs. referential integrity
	Slide 70: Combining relations
	Slide 71: Combining relations
	Slide 72: Today’s agenda
	Slide 73: Design theory for relational databases
	Slide 74: Normal forms
	Slide 75: 1st Normal Form (1NF)
	Slide 76: Data anomalies
	Slide 77: Data anomalies
	Slide 78: Data anomalies
	Slide 79: Data anomalies
	Slide 80: Data anomalies
	Slide 81: Functional dependency (FD)
	Slide 82: Splitting/combining rule
	Slide 83: Splitting/combining rule
	Slide 84: Splitting rule
	Slide 85: Functional dependencies as constraints
	Slide 86: Functional dependencies as constraints
	Slide 87: Trivial functional dependencies
	Slide 88: FDs for relational schema design
	Slide 89: Finding functional dependencies
	Slide 90: Armstrong’s axioms
	Slide 91: Armstrong’s axioms
	Slide 92: Armstrong’s axioms
	Slide 93: Armstrong’s axioms
	Slide 94: Armstrong’s axioms
	Slide 95: Armstrong’s axioms
	Slide 96: Closure of attributes
	Slide 97: Closure of attributes
	Slide 98: Closure of attributes
	Slide 99: Closure of attributes
	Slide 100: Closure of attributes
	Slide 101: Closure algorithm
	Slide 102: Why do we need the closure?
	Slide 103: Using closure to infer ALL FDs
	Slide 104: Using closure to infer ALL FDs
	Slide 105: Using closure to infer ALL FDs
	Slide 106: Keys and Superkeys
	Slide 107: Keys and Superkeys
	Slide 108: Keys and Superkeys
	Slide 109: Example
	Slide 110: Example
	Slide 111: Today’s agenda
	Slide 112: Back to conceptual design
	Slide 113: Boyce-Codd normal form (BCNF)
	Slide 114: Boyce-Codd normal form (BCNF)
	Slide 115: Boyce-Codd normal form (BCNF)
	Slide 116: Example
	Slide 117: Example
	Slide 118: Boyce-Codd normal form (BCNF)
	Slide 119: BCNF decomposition algorithm
	Slide 120: BCNF decomposition algorithm
	Slide 121: BCNF decomposition algorithm
	Slide 122: Example: BCNF decomposition
	Slide 123: Example: BCNF decomposition
	Slide 124: Example: BCNF decomposition
	Slide 125: Example: BCNF decomposition
	Slide 126: Example: BCNF decomposition
	Slide 127: Recap: decompose to remove redundancies
	Slide 128: Recovering information from a decomposition
	Slide 129: Recovering information from a decomposition
	Slide 130: Recovering information from a decomposition
	Slide 131: Lossless decompositions
	Slide 132: Lossless decompositions
	Slide 133: A Problem with BCNF
	Slide 134: Why is that a problem?
	Slide 135: The problem with BCNF
	Slide 136: Desirable properties of decomposition
	Slide 137: Third normal form (3NF)
	Slide 138: 3NF decomposition algorithm
	Slide 139: Minimal basis generation
	Slide 140: BCNF vs 3NF
	Slide 141: Further readings
	Slide 142: Summary

