
CS4221
Relational Databases II. Turning Strategies

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

“Tuning rests on a foundation of informed
common sense. This makes it both easy and
hard. [...] Tuning is easy because the tuner
needs not struggle through complicated
formulas or theorems. [...] Tuning is difficult
because the principles and knowledge
underlying the common sense require a
broad and deep understanding [...]”

Database Tuning,
Dennis Shasha and Philippe Bonnet

• Warehouses
Warehouses have a unique identifier, a name and a location defined by a street, city and
country.

1 CREATE TABLE warehouse (
2 w id INTEGER PRI MARY KEY,
3 w name VARCHAR(50) NOT NULL ,
4 w st r eet VARCHAR(50) NOT NULL ,
5 w c i t y VARCHAR(50) NOT NULL ,
6 w count ry CHAR(50) NOT NULL) ;

Schema

Schema

1 SELECT ∗

2 FROM warehouse ;

warehouse

w_id w_name w_street w_city w_country

301 ’Schmedeman’ ’Sunbrook’ ’Singapore’ ’Singapore’

1 ’DabZ’ ’Green’ ’Patemon’ ’Indonesia’

43 ’Agimba’ ’Heath’ ’Cikaludan’ ’Indonesia’

... 1005 rows

Schema

• Items
Items have a unique identifier, a unique image identifier, a name and a price.

1 CREATE TABLE i t em (
2 i i d INTEGER PRIMARY KEY,
3 i i m i d VARCHAR(8) UNIQUE NOT NULL ,
4 i name VARCHAR(50) NOT NULL ,
5 i p r i c e NUMERIC(5 , 2) NOT NULL CHECK (i p r i c e > 0)) ;

Schema

Schema

1 SELECT ∗

2 FROM i t em ;

item

i_id i_im_id i_name i_price

1 ’35356226’ ’Indapamide’ 95.23

6 ’11822073’ ’miconazole 1’ 73.35

10 ’60429082’ ’Glipizide’ 12.62

... 483 rows

Schema

• Stocks
For each item available we record the quantity in stock in each warehouse. If an item is
not available in a warehouse, then there is no entry for this pair. The quantity is always
equal to or greater than 1.

1 CREATE TABLE st ock (
2 w id INTEGER REFERENCES warehouse (w id) ,
3 i i d INTEGER REFERENCES i t em (i i d) ,
4 s qt y SMALLINT NOT NULL CHECK (s qt y > 0) ,
5 PRIMARY KEY (w id , i i d)) ;

Schema

Schema

1 SELECT ∗

2 FROM st ock ;

stock

w_id i_id s_qty

301 5 760

301 4 938

243 352 515

... 44912 rows

Schema

• What Happens to a Query?
Find the name of the warehouses in the city of Singapore.

1 SELECT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’ ;

w_name

character varying(50)

"Schmedeman"

"Crescent Oaks"

"Namekagon"

"Fairfield"

"Briar Crest"

Inside PostgreSQL

Inside PostgreSQL

Inside PostgreSQL

• Query Planner/Optimizer
PostgreSQL query planner/optimizer tries and creates an optimal execution plan. An
execution plan is a tree of physical algebräıc operators such as sequential scans, index
scans, sorting and aggregation operators, nested loop, hash, and merge joins.
PostgreSQL query planner/optimizer uses the catalogue and statistics to estimate the
cost of the possible plans and to find a plan with an estimated least cost.

• Query Executioner
PostgreSQL query executioner executes the execution plan. It accesses the data,
indexes and stored functions.

• Timings
The total query runtime includes the planning time, the execution time, and the time
spent communicating with the client.

Inside PostgreSQL

• EXPLAIN displays the execution plan that the PostgreSQL query planner/optimizer
generates for the supplied statement.

1 EXPLAIN SELECT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’ ;

Query Plan

"Seq Scan on warehouse w (cost=0.00..21.56 rows=5 width=7)"

" Filter: ((w_city)::text = ’Singapore’::text)"

"(cost=0.00..21.56 rows=5 width=7)"

Explain

EXPLAIN displays the execution plan that PostgreSQL query planner/optimizer generates for
the supplied statement. At each node of the execution plan, i.e. for eachoperator, it gives
several estimates.

Estimated start-up cost in units of disk page fetches by the node.
Estimated total cost in units of disk page fetches by the node.

Estimated number of rows output by the node.
Estimated average width in bytes of rows output by the node

Explain

The cost is estimated in units of disk page fetches.
The cost is proportional to the time spent.
The start-up cost (time expended before the output scan can start, e.g., time to do
the sorting in a sort node)

The total cost of a node includes the total cost of all its children.
The total cost is an estimate. A query with a LIMIT clause, for example, may not pay
the total cost.
CPU effort is also estimated. It is converted into disk-page units using some fairly
arbitrary fudge factors.
The total cost of the root node does not include the transmission of results to the
client.

Explain

• System Catalogs and Statistics
PostgreSQL query planner/optimizer uses statistics build (and maintained) by
PostgreSQL.

1 SELECT ∗ FROM pg st a t s

2 WHERE tablename= ’ warehouse ’ AND attname= ’ w c i t y ’ ;

For instance, the view pg_stats records that Singapore is a most common value of the
column w_city with frequency of 0.00497512 (in a table of 1005 rows.) It also records
the average width of columns.

S e e also other system catalogs and views such as pg_tables, pg_attribute, and
pg_stat ist ic.

Explain

1 EXPLAIN ANALYZE SELECT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’ ;

Query Plan

Seq Scan on warehouse w

(cost=0.00..21.56 rows=5 width=7)

(actual time=0.037..0.759 rows=5 loops=1)

Filter: ((w_city)::text = ’Singapore’::text) Rows Removed

by Filter: 1000

Planning time: 0.122 ms

Execution time: 0.798 ms

ANALYZE

• EXPLAIN ANALYZE
EXPLAIN ANALYZE gives for each node estimates obtained by random sampling aswell
as actual numbers for start up and total cost, number of rows and number of
executions.

Actual start-up time in milliseconds.
Actual total time in milliseconds.

Actual number of rows output by this plan node.
Actual number of executions of the node (for instance if an indexed scan is
repeated).

EXPLAIN ANALYZE gives the planning and execution times.

ANALYZE

Planning t ime: 0.122 ms

Execution t ime : 0.798 ms

• EXPLAIN ANALYZE
EXPLAIN ANALYZE also gives the actual total planning and execution times in
milliseconds. The total execution time includes execution start-up and shut-down time, as
well as time spent processing the result rows.

ANALYZE

• Actual Performance
In order to get a good idea of performance, one should run the queries many times and
look at an average. Statistics are gathered. Pages are brought to the main memory buffer.
VACUUM reorganizes the data on a regular basis. The costs, the times, and the plan change
accordingly.

We do not do that in these slides.

ANALYZE

• Explain Analyze
The Explain and Explain Analyze buttons in the toolbar of pgAdmin 4 generate the
execution plan and the execution plan with execution timing, respectively. One can toggle
the options to display in a verbose mode information about costs, buffers, and timings.
The execution plan is represented in JSON.

pgAdmin 4

• Graphical
The Explain > Graphical tab shows a graphical version of the execution plan.

pgAdmin 4

• Graphical
The Explain > Graphical > Download tab downloads a scalable vector graphics
image of the graphical version of the execution plan.

pgAdmin 4

• Analysis
The Explain > Analysis tab shows the details of the execution plan in table format,
with timings in Analyze mode. It is inspired by the online plan analysis tool “depesz” (see
www.depesz.com and explain.depesz.com).

pgAdmin 4

http://www.depesz.com/

• Statistics
The Explain > S t a t i s t i c s tab shows further statistics in Analyze mode .

pgAdmin 4

• Query
Find the name of the warehouses in the city of Singapore.

1 SELECT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’ ;

w_name

character varying(50)

"Schmedeman"

"Crescent Oaks"

"Namekagon"

"Fairfield"

"Briar Crest"

Sequential Scan

Sequential Scan

Scan

If the statistics indicate that the percentage of data to retrieve is large (more than 5% or
so!) and it is scattered, it is not possible or worth trying to prepare and use another
method than a sequential scan, then the optimizer uses a sequential scan.

Sequential Scan

1 EXPLAIN SELECT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’ ;

Query Plan

Seq Scan on warehouse w (cost=0.00..21.56 rows=5 width=7)

" Filter: ((w_city)::text = ’Singapore’::text)

Sequential Scan

1 EXPLAIN ANALYZE SELECT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’ ;

Query Plan

Seq Scan on warehouse w

(cost=0.00..21.56 rows=5 width=7)

(actual time=0.017..0.355 rows=5 loops=1)

Filter: ((w_city)::text = ’Singapore’::text)

Rows Removed by Filter: 1000

Planning time: 0.096 ms

Execution time: 0.372 ms

Sequential Scan

1 EXPLAIN SELECT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’
4 ORDER BY w. w name;

Query Plan

Sort (cost=21.62..21.63 rows=5 width=7)

Sort Key: w_name

-> Seq Scan on warehouse w (cost=0.00..21.56 rows=5 width=7)

Filter: ((w_city)::text = ’Singapore’::text)

Sorting

1 EXPLAIN ANALYZE SELECT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’
4 ORDER BY w. w name;

Query Plan

Sort (cost=21.62..21.63 rows=5 width=7) (actual time=0.356..0.356 rows=5 loops=1)

Sort Key: w_name

Sort Method: quicksort Memory: 25kB

-> Seq Scan on warehouse w (cost=0.00..21.56 rows=5 width=7)

 (actual time=0.026..0.341 rows=5 loops=1)

Filter: ((w_city)::text = ’Singapore’::text)

Rows Removed by Filter: 1000

Planning time: 0.136 ms

Execution time: 0.377 ms

Sorting

1 EXPLAIN SELECT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’
4 GROUP BY w. w name;

Query Plan

Unique (cost=21.62..21.65 rows=5 width=7)

-> Sort (cost=21.62..21.63 rows=5 width=7)

Sort Key: w_name

-> Seq Scan on warehouse w (cost=0.00..21.56 rows=5 width=7)

Filter: ((w_city)::text = ’Singapore’::text)

Sorting

1 EXPLAIN SELECT DISTINCT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’ ;

Query Plan

Group (cost=21.62..21.65 rows=5 width=7)

Group Key: w_name

-> Sort (cost=21.62..21.63 rows=5 width=7)

Sort Key: w_name

-> Seq Scan on warehouse w (cost=0.00..21.56 rows=5 width=7)

Filter: ((w_city)::text = ’Singapore’::text)

Sorting

• An index is a data structure that guides the access to the data.

• An index may or may not speed-up queries, deletions and updates. It generally
slows down insertions and updates (since both the data and the index must be
updated and possibly re-organized).

• PostgreSQL does not offer integrated index (data is the index) and only cluster
indexes (data is organized according to the index) on demand and statically.

Index

• Primary Key
PostgreSQL automatically creates an index for each unique and primary key constraint. The
index is used to enforce uniqueness (at extra cost for insertions and updates).

Index

• Foreign Key
PostgreSQL does not create an index for foreign key constraints.

It is up to the designer to decide whether to create an index on the referencing columns
and what index to create. Insertion and updates of the referenced table require a scan of
the referencing table. It may be a good idea to create an index on the referencing columns.
However, foreign key attributes are generally components of acomposite key and are
therefore indexed with a multicolumn index.

Index

• Finding the Existing Indexes
We create a view to gather information about the indexes from system tables.

1 CREATE VI EW i ndex i n f o AS SELECT
2 t . relname AS t able name ,
3 i x . rel name AS index name ,
4 i . i nd i sun i que AS i s un i que ,
5 i . i nd i sp r i mar y AS i s pr i mar y ,
6 r egexp r ep l ac e (pg get i ndexdef (i . i n d ex r e l i d) , ’ .∗\ ((.∗) \) ’ , ’ \1 ’)

column names
7 FROM pg i ndex i , pg c l ass t , pg c l a ss i x
8 WHERE t . o i d = i . i n d r e l i d AND i x . o i d = i . i n d ex r e l i d ;

Index

1 SELECT ∗ FROM i ndex i n f o i WHERE i . t abl e name= ’ warehouse ’ ;

1 SELECT ∗ FROM i ndex i n f o i WHERE i . t abl e name= ’ i t em ’ ;

1 SELECT ∗ FROM i ndex i n f o i WHERE i . t abl e name= ’ st ock ’ ;

table_name index_name is_unique is_primary column_names

"stock" "stock_pkey" t t "w_id, i_id"

table_name index_name is_unique is_primary column_names

"warehouse" "warehouse_pkey" t t "w_id"

table_name index_name is_unique is_primary column_names

"item" "item_pkey" t t "i_id"

"item" "item_i_im_id_key" t f "i_im_id"

Index

• Creating an Index
We can create an index on the i_pr ice attribute of item.

1 CREATE INDEX i i p r i c e ON i t em (i p r i c e) ;

1 SELECT ∗ FROM i ndex i n f o i WHERE i . t abl e name= ’ i t em ’ ;

table_name index_name is_unique is_primary column_names

"item" "i_i_price" f f "i_price"

"item" "item_pkey" t t "i_id"

"item" "item_i_im_id_key" t f "i_im_id"

Index

• Creating an Index: General Syntax
We highlight some improtant parameters of the CREATE INDEX command in
PostgreSQL.

1 CREATE [UNIQUE] INDEX [name] ON t abl e name
2 [USING method]
3 ({ column name | (exp r ess i on) })

4 [WHERE pr ed i c a t e]

UN I QUE checks for duplicate values.
method can be btree (default), hash and other index types.
predicate defines a partial index.

Index

• B+Trees
What is a B+Tree index?

Index

• Sparse vs Dense
What is the difference between a sparse and a dense index?
Are PostgreSQL indexes sparse or dense?

• Clustered vs Unclustered
What is the difference between a clustered and an unclustered index?
Are PostgreSQL indexes clustered or unclustered (see C L U S T ER)?

• Primary vs Secondary
What is the difference between a primary and a secondary index?
Are PostgreSQL indexes primary or secondary?

Index

• Covering
What is a covering index?
Can PostgreSQL indexes be covering (see also INCLUDE in PostgreSQL 11)?

Index

• Query
Find the name of the warehouse with identifier 123.

1 SELECT w. w name
2 FROM warehouse w
3 WHERE w. w id= ’ 123 ’ ;

w_name

cha rac te r vary ing(50)

"Janyx"

Index Scan

Index Scan

If the statistics indicate that the percentage of data to retrieve is tiny and if an index is
available, it may provide direct access. The optimizer uses an index scan.

Index Scan

1 EXPLAIN ANALYZE SELECT w. w name
2 FROM warehouse w
3 WHERE w. w id= ’ 123 ’ ;

Query Plan

Index Scan using warehouse_pkey on warehouse w

(cost=0.28..8.29 rows=1 width=7)

(actual time=0.015..0.016 rows=1 loops=1)

Index Cond: (w_id = 123)

Planning time: 0.255 ms

Execution time: 0.058 ms

Index Scan

• Creating an Index
Create a B+Tree index (default) on the w_city attribute of warehouse.

1 CREATE INDEX i w c i t y ON warehouse (w c i t y) ;

1 SELECT ∗ FROM i ndex i n f o i WHERE i . t abl e name= ’ warehouse ’ ;

table_name index_name is_unique is_primary column_names

"warehouse" "warehouse_pkey" t t "w_id"

"warehouse" "i_w_city" f f "w_city"

Bitmap Heap Scan

Bitmap Heap Scan

• Bitmap Index Scan
If the statistics indicate that the percentage of data to retrieve is average and if an index is
available, a bitmap built on the index may provide somehow direct access. The optimizer
uses a bitmap heap scan.

Bitmap Heap Scan

1 EXPLAIN ANALYZE SELECT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’ ;

The Bitmap Index Scan is implemented by a Bitmap Index Scan followed by a Bitmap
Heap Scan in PostgreSQL.

Query Plan

Bitmap Heap Scan on warehouse w

(cost=4.31..12.38 rows=5 width=7)

(actual time=0.055..0.057 rows=5 loops=1)

Recheck Cond: ((w_city)::text = ’Singapore’::text)

Heap Blocks: exact=1

-> Bitmap Index Scan on i_w_city

(cost=0.00..4.31 rows=5 width=0)

(actual time=0.046..0.046 rows=5 loops=1)

Index Cond: ((w_city)::text = ’Singapore’::text)

Planning time: 0.504 ms

Execution time: 0.092 ms

Bitmap Heap Scan

We can cluster the index. This would need to be done regularly (if there are updates).
Postgres does not dynamically maintain the clustered index!

1 EXPLAIN ANALYSZE ELECT w. w name
2 FROM warehouse w
3 WHERE w. w c i t y = ’ S ingapore ’ ;
4

5 SELECT ∗ FROM warehouse ;

6

7 CLUSTER warehouse USING i w c i t y ;

8

9 EXPLAIN ANALYZE SELECT w. w name
10 FROM warehouse w
11 WHERE w. w c i t y = ’ S ingapore ’ ;
12

13 SELECT ∗ FROM warehouse ;

Bitmap Heap Scan

	Slide 1: CS4221 Relational Databases II. Turning Strategies
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

