
CS4221
Relational Databases II. Turning Strategies B

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

• Index scans
• Multicolumn index
• Joins
• Denormalisation
• Views
• Materialized views

Agenda

• Queries (TPCC)

• Index scans, bitmap heap scans

Recall from last lecture

• Query
Find the items and warehouses where the item quantity is below 100.

1 SELECT ∗

2 FROM stocks s
3 WHERE s . s q t y < 100;

When does it happen?

• Sequential Scan
Find the items and warehouses where the item quantity is below 100.

1 EXPLAIN ANALYZE SELECT ∗

2 FROM st ock s
3 WHERE s . s q t y < 100;

Query Plan

Seq Scan on stock s

(cost=0.00..804.40 rows=6706 width=10)

(actual time=0.022..19.820 rows=6750 loops=1)

Filter: (s_qty < 100)

Rows Removed by Filter: 38162

Planning time: 0.347 ms

Execution time: 20.608 ms

When does it happen?

• Creating an Index
Create a B+Tree index (default) on the s_qty attribute of stock.

1 CREATE INDEX i s q t y ON st ocks (s q t y)
;

When does it happen?

• Bitmap Heap Scan
With an index and sufficient statistics the optimizer can choose using bitmaps
constructed from the index.

1 EXPLAIN ANALYZE SELECT ∗

2 FROM st ocks s
3 WHERE s . s q t y < 100;

When does it happen?

1 EXPLAIN ANALYZE SELECT ∗

2 FROM st ock s
3 WHERE s . s q t y < 100;

Query Plan

Bitmap Heap Scan on stock s

(cost=128.26..455.09 rows=6706 width=10)

(actual time=1.992..3.667 rows=6750 loops=1)

Recheck Cond: (s_qty < 100)

Heap Blocks: exact=243

-> Bitmap Index Scan on i_s_qty

(cost=0.00..126.58 rows=6706 width=0)

(actual time=1.932..1.932 rows=6750 loops=1)

Index Cond: (s_qty < 100)

Planning time: 0.653 ms

Execution time: 4.081 ms

When does it happen?

• Sequential Scan
Even with an index and sufficient statistics the optimizer can choose a sequential scan.

1 EXPLAIN ANALYZE SELECT ∗

2 FROM st ock s
3 WHERE s . s q t y >= 100;

Query Plan

Seq Scan on stock s

(cost=0.00..804.40 rows=38206 width=10)

(actual time=0.022..17.914 rows=38162 loops=1)

Filter: (s_qty >= 100)

Rows Removed by Filter: 6750

Planning time: 0.114 ms

Execution time: 21.138 ms

When does it happen?

• Index Scan
With an index and sufficient statistics the optimizer can choose using the index.

1 EXPLAIN ANALYZE SELECT ∗

2 FROM st ock s
3 WHERE s . s q t y >= 10000;

Query Plan

Index Scan using i_s_qty on stock s

(cost=0.29..8.26 rows=1 width=10)

(actual time=0.043..0.089 rows=37 loops=1)

Index Cond: (s_qty >= 1000)

Planning time: 1.035 ms

Execution time: 0.119 ms

When does it happen?

• The Condition is not Selective
s.s_qty >= 100:38222 of 44912 rows (85%) are estimated to match the condition. The
optimizer chooses a sequential scan.

• The Condition is Moderately Selective
s.s_qty < 100: 6690 of 44912 rows (15%) are estimated to match the condition. The
optimizer chooses a bitmap heap scan.

• The Condition is very Selective
s.s_qty >= 100: 37 of 44912 rows (less than 0.001%) are estimated to match the
condition. The optimizer chooses an inde x scan.

When does it happen?

These exact numbers will change in different PostgreSQL versions. You get the idea.

qty stat test

0 100 Seq Scan on stock

100 85 Seq Scan on stock

200 76 Seq Scan on stock

300 66 Seq Scan on stock

400 57 Seq Scan on stock

500 48 Seq Scan on stock

600 38 Bitmap Heap Scan on stock

700 28 Bitmap Heap Scan on stock

800 19 Bitmap Heap Scan on stock

900 10 Bitmap Heap Scan on stock

1000 0 Index Scan using i_s_qty on stock

When does it happen?

• Index scans
• Multicolumn index
• Joins
• Denormalisation
• Views
• Materialized views

Agenda

• Multicolumn Index
A multicolumn index can be used for index scan.

1 EXPLAIN SELECT s . s qt y
2 FROM stocks s
3 WHERE s . w id= ’ 123 ’ AND s . i i d= ’ 7 ’ ;

Query Plan

Index Scan using stock_pkey on public.stock as s

(cost=0.29..8.31 rows=1 width=2)

Index Cond: ((s.w_id = 123) AND (s.i_id = 7))

Multicolumn Index

• Multicolumn Index
A multicolumn index can be used for index scan even with a partial condition.

1 EXPLAIN SELECT s . s qt y
2 FROM stocks s
3 WHERE s . w id= ’ 123 ’ ;

Query Plan

Index Scan using stock_pkey on stock s

(cost=0.29..74.95 rows=35 width=2)

Index Cond: (w_id = 123)

Multicolumn Index

• Multicolumn Index
This only works if the condition involves the prefix of the multicolumn index (attributes
from left to right).

1 EXPLAIN SELECT s . s qt y
2 FROM st ock s
3 WHERE s . i i d= ’ 7 ’ ;

Query Plan

Seq Scan on stock s

(cost=0.00..804.40 rows=90 width=2)

Filter: (i_id = 7)

Multicolumn Index

• Index Only Scan
Depending on the query , the scan can be done within the index only , without accessing
the data.

1 EXPLAIN SELECT s . i i d
2 FROM st ocks s
3 WHERE s . w id= ’ 123 ’ ;

Query Plan

Index Only Scan using stock_pkey on stock s

(cost=0.29..74.95 rows=35 width=4)

Index Cond: (w_id = 123)

Multicolumn Index

Multicolumn Index

• Index Only Scan
Again, for a multicolumn index, it depends on the prefix.

1 EXPLAIN SELECT s . w id
2 FROM st ocks s
3 WHERE s . i i d= ’ 7 ’ ;

Query Plan

Seq Scan on stock s

(cost=0.00..804.40 rows=90 width=4)

Filter: (i_id = 7)

Multicolumn Index

Nested Loop

• Index scans
• Multicolumn index
• Joins
• Denormalisation
• Views
• Materialized views

Agenda

• Nested Loop Join With Inner Sequential Scan
We make temporary copies of stock and warehouse. The copies do not have indexes.
PostgreSQL does not create statistics for temporary tables unless told to do so.

1 CREATE TEMPORARY TABLE st ock1 AS
2 SELECT ✯ FROM st ocks s ;
3

4 CREATE TEMPORARY TABLE warehouse 1 AS
5 SELECT ✯ FROM warehouses w;

Nested Loop

• Query
Find the names of the warehouses in Singapore that have stock for item 33.

1 SELECT w. w name
2 FROM warehouse1 w NATURAL JOIN st ock1 s
3 WHERE w. w c i t y= ’ S ingapore ’ AND s . i i d =33;

w_name

”Schmedeman”

”Crescent Oaks”

”Namekagon”

”Briar Crest”

Nested Loop

• Nested Loop Join with Inner sequential Scan
The outer table is usually the smallest (w.r.t. fit into memory).

1 EXPLAIN ANALYZE SELECT w. w name
2 FROM warehouse1 w NATURAL JOIN st ock1 s
3 WHERE w. w c i t y= ’ S ingapore ’ AND s . i i d =33;

Nested Loop

Query Plan

Nested Loop

(cost=0.00..908.28 rows=1 width=118)

(actual time=0.171..55.095 rows=4 loops=1)

Join Filter: (w.w_id = s.w_id)

-> Seq Scan on warehouse1 w

(cost=0.00..12.00 rows=1 width=122)

(actual time=0.019..0.283 rows=5 loops=1)

Filter: ((w_city)::text = ’Singapore’::text)

Rows Removed by Filter: 1000

-> Seq Scan on stock1 s

(cost=0.00..893.03 rows=260 width=4)

(actual time=0.121..10.903 rows=301 loops=5)

Filter: (i_id = 33)

Rows Removed by Filter: 44611

Planning time: 0.173 ms

Execution time: 55.135 ms

Nested Loop

• Nested Loop Join With Materialised Inner Sequential Scan
The filtered inner table may be materialised if there are several iterations of the inner
loop.

Let us artificially inflate the w arehouse1 table size.

1 INSERT INTO warehouse1 SELECT ✯ FROM warehouses;
2 INSERT INTO warehouse1 SELECT ✯ FROM warehouses;
3

4 EXPLAIN ANALYZE SELECT w. w name
5 FROM warehouse1 w NATURAL JOIN st ock1 s
6 WHERE w. w c i t y= ’ S ingapore ’ AND s . i i d =33;

Nested Loop

Query Plan

Nested Loop

(cost=0.00..933.23 rows=3 width=118)

(actual time=0.134..13.890 rows=12 loops=1)

Join Filter: (w.w_id = s.w_id) Rows Removed by Join Filter: 4503

-> Seq Scan on stock1 s

(cost=0.00..893.03 rows=260 width=4)

(actual time=0.118..11.527 rows=301 loops=1)

Filter: (i_id = 33)

Rows Removed by Filter: 44611

-> Materialize

(cost=0.00..32.41 rows=2 width=122)

(actual time=0.000..0.005 rows=15 loops=301)

-> Seq Scan on warehouse1 w

(cost=0.00..32.40 rows=2 width=122)

(actual time=0.010..1.080 rows=15 loops=1)

Filter: ((w_city)::text = ’Singapore’::text)

Rows Removed by Filter: 3000

Planning time: 0.132 ms

Execution time: 13.983 ms

Nested Loop

Nested Loop

• Query
Find the identifier of the items and their individual quantity in stock in warehouses
called ’Agimba’.

1 SELECT s . i i d , s . s q t y
2 FROM warehouse w JOIN st ock s ON w. w id=s . w id
3 WHERE w. w name = ’ Agimba ’ ;

Nested Loop

• Nested Loop Join With Inner Index Scan
If an index is available, then the optimizer may choose a Nested Loop Join with an
inner index scan.

1 EXPLAIN ANALYZE SELECT s . i i d , s . s qt y
2 FROM warehouses w JOIN st ocks s ON w. w id=s . w id
3 WHERE w. w name= ’ Agimba ’ ;

Nested Loop

Query Plan

Nested Loop

(cost=0.29..203.42 rows=89 width=6)

(actual time=0.050..0.585 rows=444 loops=1)

-> Seq Scan on warehouse w

(cost=0.00..21.56 rows=2 width=4)

(actual time=0.031..0.274 rows=3 loops=1)

Filter: ((w_name)::text = ’Agimba’::text)

Rows Removed by Filter: 1002

-> Index Scan using stock_pkey on stock s

 (cost=0.29..90.45 rows=48 width=10)

 (actual time=0.014..0.062 rows=148 loops=3)

Index Cond: (w_id = w.w_id)

Planning time: 0.481 ms

Execution time: 0.659 ms

Nested Loop

Hash Join

• Query
Find the quantity in stock in the warehouse for every item. Print the name of the
warehouse, the identifier of the item and the quantity.

1 SELECT w. w name , s . i i d , s . s qt y
2 FROM warehouses w, st ocks s
3 WHERE w. w id=s . w id ;

Hash Join

In general, the optimizer will choose a Hash Join

s . s q t y1 EXPLAIN ANALYZE SELECT w. w name , s . i i d ,
2 FROM warehouses w, st ocks s
3 WHERE w. w id=s . w id ;

Hash Join

Query Plan

Hash Join

(cost=31.61..1341.27 rows=44912 width=13)

(actual time=0.811..37.777 rows=44912 loops=1)

Hash Cond: (s.w_id = w.w_id)

-> Seq Scan on stock s

(cost=0.00..692.12 rows=44912 width=10)

(actual time=0.017..7.814 rows=44912 loops=1)

-> Hash

(cost=19.05..19.05 rows=1005 width=11)

(actual time=0.769..0.769 rows=1005 loops=1)

Buckets: 1024 Batches: 1 Memory Usage: 53kB

-> Seq Scan on warehouse w

(cost=0.00..19.05 rows=1005 width=11)

(actual time=0.024..0.353 rows=1005 loops=1)

Planning time: 0.573 ms

Execution time: 40.879 ms

Hash Join

The plan is generally , but not always, the same regardless of the order of tables in the
FROM clause.

1 EXPLAIN SELECT w. w name , s . i i d , s . s q t y
2 FROM st ocks s , warehouses w
3 WHERE w. w id=s . w id ;

Hash Join

Query Plan

Hash Join

(cost=31.61..1341.27 rows=44912 width=13)

Hash Cond: (s.w_id = w.w_id)

-> Seq Scan on stock s (cost=0.00..692.12

rows=44912 width=10)

-> Hash

(cost=19.05..19.05 rows=1005 width=11)

-> Seq Scan on warehouse w

(cost=0.00..19.05 rows=1005 width=11)

Hash Join

Merge Join

In the absence of statistics, PostgreSQL may prefer a Merge Join.

1 CREATE TABLE warehouse2 AS
2 SELECT ✯ FROM warehouses;

Merge Join

• Hash Join
With minimum statistics PostgreSQL chooses a Hash Join.

1 EXPLAIN SELECT w1. w name
2 FROM warehouse2 w1, warehouse2 w2
3 WHERE w1. w name=w2. w name;

Query Plan

Hash Join (cost=13.60..27.40 rows=160 width=118)

Hash Cond: ((w1.w_name)::text = (w2.w_name)::text)

-> Seq Scan on warehouse2 w1 (cost=0.00..11.60 rows=160 width=118)

-> Hash (cost=11.60..11.60 rows=160 width=118)"

-> Seq Scan on warehouse2 w2 (cost=0.00..11.60 rows=160 width=118)

Merge Join

We remove the statistics and PostgreSQL chooses a Merge Join.

1 SELECT ✯ FROM p g s t a t i s t i c s ,
2 WHERE s . s t a r e l i d = t . o i d
3 AND t . relname= ’ warehouse2 ’ ;

pg c l a ss t

1 DELETE FROM p g s t a t i s t i c s
2 WHERE s . s t a r e l i d = ANY (
3

4

5

SELECT t . o i d
FROM pg c l ass t

WHERE t . relname= ’ warehouse2 ’) ;

1 SELECT ✯ FROM p g s t a t i s t i c s , pg c l ass t
2 WHERE s . s t a r e l i d = t . o i d
3 AND t . relname= ’ warehouse2 ’ ;

Merge Join

1 EXPLAIN SELECT w1. w name
2 FROM warehouse2 w1, warehouse2 w2
3 WHERE w1. w name=w2. w name;

Query Plan

Merge Join (cost=138.33..219.10 rows=5050 width=118)

Merge Cond: ((w1.w_name)::text = (w2.w_name)::text)

-> Sort (cost=69.16..71.68 rows=1005 width=118)

Sort Key: w1.w_name

-> Seq Scan on warehouse2 w1 (cost=0.00..19.05 rows=1005 width=118)

-> Sort (cost=69.16..71.68 rows=1005 width=118)

Sort Key: w2.w_name

-> Seq Scan on warehouse2 w2 (cost=0.00..19.05 rows=1005 width=118)

Merge Join

VACUUM and VACUUM FULL recover or reuse disk space occupied by updated or deleted
rows, update data statistics used by the PostgreSQL query planner, indentify
opportunities for index-only scans, and protect against loss of very old data.

1 VACUUM ;
2 VACUUM FULL ;
3 VACUUM warehouse2 ;
4 VACUUM FULL warehouse2 ;

Merge Join

A N A LY Z E gathers and updates statistics used by the PostgreSQL query planner.

1 ANALYZE warehouse2 ;
2 ANALYZE ;
3 VACUUM ANALYZE ;
4 VACUUM ANALYZE warehouse2 ;
5 VACUUM FULL ANALYZE ;
6 VACUUM ANALYZE warehouse2 ;

Merge Join

1 ANALYZE warehouse2 ;

1 SELECT ✯ FROM p g s t a t i s t i c s , pg c l ass t
2 WHERE s . s t a r e l i d = t . o i d
3 AND t . relname= ’ warehouse2 ’ ;

1 EXPLAIN SELECT w1. w name
2 FROM warehouse2 w1, warehouse2 w2
3 WHERE w1. w name=w2. w name;

Query Plan

Hash Join (cost=13.60..27.40 rows=160 width=118)

Hash Cond: ((w1.w_name)::text = (w2.w_name)::text)

-> Seq Scan on warehouse2 w1 (cost=0.00..11.60 rows=160 width=118)

-> Hash (cost=11.60..11.60 rows=160 width=118)"

-> Seq Scan on warehouse2 w2 (cost=0.00..11.60 rows=160 width=118)

Merge Join

PostgreSQL has an autovaccum daemon that can issue vacuum and analyse commands
adaptively.

Merge Join

• Semi-Join
When the inner table is only used for filtering PostgreSQL can use a Semi-Join.

1 EXPLAIN SELECT w. w name
2 FROM warehouses w
3 WHERE EXISTS (
4 SELECT ✯

5 FROM st ocks s
6 WHERE s . w id = w. w id) ;

Query Plan

Nested Loop Semi Join (cost=0.29..435.16 rows=923 width=7)

-> Seq Scan on warehouse w (cost=0.00..19.05 rows=1005 width=11)

-> Index Only Scan using stock_pkey on stock s (cost=0.29..3.03 rows=49 width=4)

Index Cond: (w_id = w.w_id)

Merge Join

• Anti-Join
When the inner table is only used for excluding results PostgreSQL can use an
Anti–Join.

1 EXPLAIN SELECT w. w name
2 FROM warehouses w
3 WHERE NOT EXISTS (
4

5

6

SELECT ✯

FROM st ock s
WHERE s . w id = w. w id) ;

Query Plan

Nested Loop Anti Join (cost=0.29..435.16 rows=82 width=7)

-> Seq Scan on warehouse w (cost=0.00..19.05 rows=1005 width=11)

-> Index Only Scan using stock_pkey on stock s (cost=0.29..3.03 rows=49 width=4)

Index Cond: (w_id = w.w_id)

Merge Join

• Anti-Join
When the inner table is only used for excluding results PostgreSQL can use an
Anti–Join.

1 EXPLAIN SELECT w. w name
2 FROM warehouses w LEFT OUTER JOIN st ocks s ON w. w id = s . w id
3 WHERE s . w id IS NULL ;

Query Plan

Nested Loop Anti Join (cost=0.29..435.16 rows=82 width=7)

-> Seq Scan on warehouse w (cost=0.00..19.05 rows=1005 width=11)

-> Index Only Scan using stock_pkey on stock s (cost=0.29..3.03 rows=49 width=4)

Index Cond: (w_id = w.w_id)

Merge Join

• Don’t Use NOT IN
PostgreSQL does not really do well with N O T IN...

1 EXPLAIN SELECT w. w name
2 FROM warehouses w
3 WHERE w. w id NOT IN (
4

5

SELECT s . w id
FROM st ock s) ;

Query Plan

Seq Scan on warehouse w (cost=804.40..825.96 rows=502 width=7)

Filter: (NOT (hashed SubPlan 1))

SubPlan 1

-> Seq Scan on stock s (cost=0.00..692.12 rows=44912 width=4)

Merge Join

• Outer Join
And, of course, PostgreSQL implements OUTER JOINS.

1 EXPLAIN SELECT i . i name , s . w id
2 FROM i t ems i LEFT OUTER JOIN st ocks s ON s . i i d = i . i i d
3 WHERE i . i name = ’MECLIZINE HYDROCHLORIDE ’

Query Plan

Hash Right Join (cost=11.05..872.52 rows=93 width=22)

Hash Cond: (s.i_id = i.i_id)

-> Seq Scan on stock s (cost=0.00..692.12 rows=44912 width=8

-> Hash (cost=11.04..11.04 rows=1 width=22)

-> Seq Scan on item i (cost=0.00..11.04 rows=1 width=22)

Filter: ((i_name)::text = ’MECLIZINE HYDROCHLORIDE’::text)

Merge Join

The optimizer chooses one amongst several possible join orders. It can (indirectly) be
forced to do so.

1 SELECT w. w name , i . i name , s . s qt y
2 FROM warehouses w, st ocks s , i t ems i
3 WHERE w. w id=s . w id AND s . i i d= i . i i d ;

Join Order

1 SELECT w. w name , i . i name , s . s qt y
2 FROM warehouse w NATURAL JOIN st ock s NATURAL JOIN i t em i ;

Join Order

1 SELECT w. w name , i . i name , s . s qt y
2 FROM i t em i NATURAL JOIN st ock s NATURAL JOIN warehouse w;

Join Order

• Index scans
• Multicolumn index
• Joins
• Denormalisation
• Views
• Materialized views

Agenda

• Normalised Schema
A normalised schema requires to join tables on the equality of their primary and foreign
keys. Joins can expensive.

Denormalization

1 EXPLAIN ANALYZE SELECT w. w name , i . i name , s . s q t y
2 FROM warehouses w NATURAL JOIN st ocks s NATURAL JOIN i t ems i ;

Query Plan

"Hash Join ...

...

Planning time: 0.966 ms

Execution time: 73.789 ms+

Denormalization

1 EXPLAIN ANALYZE SELECT w. w name , i . i name , s . s q t y
2 FROM warehouses w NATURAL JOIN st ocks s NATURAL JOIN i t ems i
3 WHERE w. w name= ’ Agimba ’ ;

Query Plan

"Hash Join ...

...

Planning time: 1.318 ms

Execution time: 1.615 ms +

Denormalization

• Denormalised Schema
We can denormalise the schema by joining back some tables together. Insertions,
deletions and updates are more complicated and they are risky since some constraints
cannot be maintained. They are more costly because of manual propagation (one must use
triggers). Some but not all queries are faster.

Denormalization

1 EXPLAIN ANALYZE CREATE TABLE t a l l AS SELECT ✯

2 FROM warehouses w NATURAL JOIN st ocks s NATURAL JOIN i t ems i ;

Query Plan

"Hash Join ...

...

Planning time: 0.798 ms

Execution time: 123.934 ms

Denormalization

1 EXPLAIN ANALYZE SELECT t . w name , t . i name , t . s qt y
2 FROM t a l l t ;

Query Plan

Seq Scan on tall t ...

...

Planning time: 0.041 ms

Execution time: 28.884 ms+

Denormalization

1 EXPLAIN ANALYZE SELECT t . w name , t . i name , t . s qt y
2 FROM t a l l t
3 WHERE t . w name= ’ Agimba ’ ;

Query Plan

Seq Scan on tall t ...

...

Planning time: 0.094 ms

Execution time: 16.289 ms

Denormalization

• Index scans
• Multicolumn index
• Joins
• Denormalisation
• Views
• Materialized views

Agenda

We can create views, but they are for convenience only. They do not change the
performance from that of the underlying normalised schema (the view definition is usedby
the optimizer as would a subquery).

1 CREATE VI EW v a l l AS SELECT ✯

2 FROM warehouses w NATURAL JOIN st ocks s NATURAL JOIN i t ems i ;

Views

1 EXPLAIN ANALYZE SELECT v . w name , v . i name , v . s q t y
2 FROM v a l l v ;

Query Plan

"Hash Join ...

...

Planning time: 0.573 ms

Execution time: 52.701 ms

Views

1 EXPLAIN ANALYZE SELECT v . w name , v . i name , v . s q t y
2 FROM v a l l v
3 WHERE v . w name= ’ Agimba ’ ;

Query Plan

"Hash Join ...

...

Planning time: 0.856 ms

Execution time: 1.193 ms

Views

• Index scans
• Multicolumn index
• Joins
• Denormalisation
• Views
• Materialized views

Agenda

We can create materialised views. They are a middle ground between anormalised and a
denormalised schema. The insertions, deletions and updates are more costly because of
propagation (currently manual with triggers and REFRESH). Postgres does not use the
materialized view definition to optimize the query. propagation.

1 CREATE MATERIALIZED VI EW mval l AS SELECT ✯

2 FROM warehouses w NATURAL JOIN st ocks s NATURAL JOIN i t ems i ;

Materialised Views

1 EXPLAIN ANALYZE SELECT v . w name , v . i name , v . s q t y
2 FROM mval l v ;

Query Plan

Seq Scan on mvall v ...

...

Planning time: 0.231 ms

Execution time: 22.740 ms

Materialised Views

1 EXPLAIN ANALYZE SELECT v . w name , v . i name , v . s q t y
2 FROM mval l v
3 WHERE v . w name= ’ Agimba ’ ;

Query Plan

Seq Scan on mvall v ...

...

Planning time: 0.112 ms

Execution time: 14.532 ms

Materialised Views

• Refreshing Materialised Views
Currently materialised views must be refreshed manually after insertion, deletion or
update in the underlying tables.There is no propagation. The materialised view is just a
copy.

1 SELECT ✯ FROM st ocks s WHERE s . w id=2 AND s . i i d =1;
2

3 EXPLAIN ANALYZE INSERT INTO st ocks VALUES (2 ,1 ,1) ;

4

5 SELECT ✯ FROM st ocks s WHERE s . w id=2 AND s . i i d =1;

6

7 SELECT ✯ FROM mval l v WHERE v . w id=2 AND v . i i d =1;

8

9 REFRESH MATERIALIZED VIEW mval l ;

10

11 SELECT ✯ FROM mval l v WHERE v . w id=2 AND v . i i d =1;

Materialised Views

• Note
We can also analyse the cost of insertion, deletions and updates. We see that
constraints and indexes are not for free.

Query Plan

Insert on stock (cost=0.00..0.01 rows=1 width=10) (actual time=0.060..0.060 rows=0 loops=1)

-> Result (cost=0.00..0.01 rows=1 width=10) (actual time=0.001..0.001 rows=1 loops=1)

Planning time: 0.035 ms

Trigger for constraint stock_w_id_fkey: time=0.223 calls=1

Trigger for constraint stock_i_id_fkey: time=0.136 calls=1

Execution time: 0.444 ms"

Materialised Views

• Indexing Materialised Views
Materialised Views can be Indexed.

Materialised Views

1 EXPLAIN ANALYZE
2 SELECT ✯ FROM mval l v WHERE v . w id=2 AND v . i i d =1;

Query Plan

Seq Scan on mvall v ...

...

Planning time: 0.087 ms

Execution time: 11.090 ms

1 CREATE I NDEX mval l pkey ON mval l (w id , i i d) ;

1 EXPLAIN ANALYZE
2 SELECT ✯ FROM mval l v WHERE v . w id=2 AND v . i i d =1;

Query Plan

Index Scan using mvall_pkey on mvall v ...

...

Planning time: 0.554 ms

Execution time: 0.081 ms

Materialised Views

• PREPARE
When the PREPARE statement is executed, the specified query is parsed, analyzed, and
rewritten. When an EXECUTE command is subsequently issued, the prepared query is
planned and executed If a prepared statement is executed enough times, the server may
eventually decide to save and re-use a generic plan rather than re-planning each time.

Arguably Good or Bad Things to Do

1 PREPARE q AS SELECT s . i i d
2 FROM st ocks s
3 WHERE s . s q t y > 500;

4

5 EXPLAIN ANALYZE EXECUTE q ;

1 DEALLOCATE q ;

Query Plan

Seq Scan on stock s

(cost=0.00..1047.40 rows=44912 width=4) (actual

time=0.482..18.560 rows=44912 loops=1)

Filter: (s_qty > 500)

Execution time: 21.659 ms

Arguably Good or Bad Things to Do

• Planner Method Configuration
It is not recommended configure the optimizer by turning off some methods. See
https://www.postgresql.org/docs/13/runtime -confi g - query.html.

1 SET enab l e seqscan = f a l s e ;

1 SET enabl e b i t mapscan = f a l s e ;

1 SET enab l e hash j o i n = f a l s e ;

etc.

Arguably Good or Bad Things to Do

https://www.postgresql.org/docs/13/runtime-config-query.html

• Hints
Several systems (e.g. MariaDB) allow the designer and the programmer to give hints to
the optimizer.

It is not recommended to use hints unless you are confident that the statistics will never
change and that the plan the optimizer can find with your hints will always bethe
optimal plan.

Arguably Good or Bad Things to Do

1 SELECT i . i name FROM warehouse
2 USE INDEX (i i p r i c e) WHERE i . i p r i c e < 100;

1 SELECT i . i name FROM warehouse
2 IGNORE INDEX (i i p r i c e) WHERE i . i p r i c e < 100;

1 SELECT i . i name FROM warehouse
2 FORCE INDEX (i i p r i c e) WHERE i . i p r i c e < 100;

1 SELECT s . i i d , s . s q t y
2 FROM warehouse w STRAIGHT JOIN st ock s ON w. w id=s . w id
3 WHERE w. w name= ’ Agimba ’ ;

Arguably Good or Bad Things to Do

• Materialized view selection

• ML-based hint selection

• Index recommendation

• Many more

Workload optimization

• Why are Queries Slow
Wrong design
Poor configuration (increase work_mem);
Tuples are scattered, tables and indexes are bloated (VACUUM, CLUSTER,
VACUUM FULL, reindexing);

Missing indexes (C R E A T E INDE X);
PostgreSQL does not choose the best plan (A N A L Y Z E);

Take Home Messages

• In conclusion
Understand the optimizer;
Tune the data (normalise, denormalise, index, create views, materialised) for
everyone;

Help the system maintain good statistics;
Hard-tune the queries as a last resort and at everyusers’current and future risk.

Take Home Messages

	Slide 1: CS4221 Relational Databases II. Turning Strategies B
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

