
CS4221
Modern Databases I.

Time-Series and Streaming Databases

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

• Time series databases

Labs on InfluxDB

• Streaming databases by NUS PhD alumni Yingjun Wu, CEO of RisingWave

no Labs, explore on your own

Agenda

Time series data

• A time series is a series of data points indexed in time order.

• Ajay Kulkarni from TimescaleDB:
• Time-series data: data that collectively represents how a

system/process/behavior changes over time.
• E.g., NYC taxi ride

Time series data

Server telemetry

Time series data

Internet of Things

Analytics

• Data typically arrive in order form
• Data is append-only, in general
• Queries are always time range-based

• Special functions and operators

• Retention & continuous query

Popularity

Most Popular TSDB

InfluxDB TimescaleDB
First Release 2013 2017
Development From Scratch Extension of

PostgreSQL
Data Model NoSQL Relational
Query Language Flux SQL
Resilience ? Inherit PostgreSQL
Performance ? ?

InfluxDB Timescale DB

• NoSQL, “Schema-less”

• Relational data model
• Normalize / denormalize
• Index
• Constraint check

• Rigid & limited
• Index on continuous field
• Enforce data validation

• Schema-less

Data model

• Write data points via line protocol • Write data
1. Define schema
2. INSERT INTO.. VALUES

field_key = field_value

Measurement

tag_key = tag_value
(optional)

Unix timestamp

Time host Mem_usage_
GB

Mem_usage_
percent

2019-08-
18T00:00:00Z

host1 15.346 23.432

2019-08-
18T00:06:00Z

host1 20.456 21.835

InfluxDB Timescale DB

Data model

• Querying data• Querying data
Tags

Time host usage_GB usage_percent

2019-08-
18T00:00:00Z

host1 15.346 23.432

2019-08-
18T00:06:00Z

host1 20.456 21.835

2019-08-
18T00:00:00Z

host2 10.873 18.345

2019-08-
18T00:06:00Z

host2 9.235 19.032

_time _measu
rement

host _field _value

2019-08-
18T00:00:00Z

mem host1 used_percent 23.432

2019-08-
18T00:06:00Z

mem host1 used_percent 21.835

2019-08-
18T00:00:00Z

mem host2 Usage_GB 10.873

2019-08-
18T00:06:00Z

mem host2 Usage_GB 9.235

InfluxDB Timescale DB

Data model

• Flux
o Functional data scripting language

o Anonymous function
o Function composability

• SQL
o Relational algebra

InfluxDB Timescale DB

Query language

• Flux
o Chaining operations

o Build query in an incremental way

• SQL
o Sub-query
o Common table expression

o With statement

EMV for each different stock symbol over time

InfluxDB Timescale DB

Query language

• Flux • SQL
o Average memory used by each running

process

InfluxDB Timescale DB

Query language

• Flux
o Query executed in the same order as in the

query statement

o Require the user to write pushdown
functions first in the query
o Range, filter, group

o Store and manipulate data in memory

• SQL
o Query optimizer

o Re-ordering

InfluxDB Timescale DB

Query language

InfluxDB: storage engine

In Memory

On Disk:
immutable

Write:
• All writes go directly to MemTable
• Periodically, the MemTable is flushed to disk as an SSTable (sorted string table)

Compaction
• Periodically, on-disk SSTables are merged and reorganized

Log Structured Merge Trees

In Memory

On Disk:
immutable

Time-series Data Characteristic:
➢Data retention

➢Delete on large scale
➢Split data into shards

Read:
• First check the MemTable
• Then the SSTable index in sequence

Delete:
• If in MemTable, delete it
• Else, a tombstone record is appended

InfluxDB: storage engine
Log Structured Merge Trees

• Write-Ahead Log (WAL)
o Durability

• Cache -- memtable
o In-memory representation of data in WAL

• Time Structured Merge file -- sstable
o Compressed series data in columnar format

• Compactor
o Converting less optimized Cache and TSM data into more read-optimized formats

• Compression
o Encoder and decoder for specific data type

InfluxDB: storage engine

InfluxDB: TSM file
field_key = field_value

Measurement

tag_key = tag_value Unix timestamp

Series key : the measurement, tags, field_key
• Stored in TSM file and Time-series Index (TSI) Series

A sequence of (timestamp, field_value)
• Stored in TSM file

seriesSeries
Key

InfluxDB: TSM file

InfluxDB: misc.
• Data Compression

• Columnar format / RLE (Regular interval) / Double Delta (Float)

• Time-Series Index
• Stores series keys, grouped by measurement, tag, field key

• Inverted Index
• Read only the series that a query requires

• Shard (time-bounded)
• A shard: a filesystem directory containing WAL, TSM, TSI
• Retention policy

Why not PostgreSQL? (claimed)

TimeScaleDB

• 20x higher inserts at scale

• Faster time-based queries, ranging
from 1.2 – 10,000x improvements

• 2000x faster deletes

• New time-centric functions

• Whenever a new row of data is inserted into PostgreSQL, the database needs to
update the indexes (e.g., B-trees) for each of the table’s indexed columns.
Once the indexes are too large to fit in memory this requires swapping one or
more pages in from disk.

• TimescaleDB solves this through its heavily utilization and automation of time-
space partitioning, even when running on a single machine. All writes to recent
time intervals are only to tables that remain in memory.

TimeScaleDB

https://blog.timescale.com/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c
https://blog.timescale.com/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c

TimeScaleDB

• Most simple queries (e.g., indexed lookups) that typically take <20ms, will be a
few milliseconds slower on TimescaleDB, owing to the slightly larger planning time
overhead.

• More complex queries that use time-based filtering or aggregations will be
anywhere from 1.2x to 5x faster on TimescaleDB.

• Queries where we can leverage time-ordering will be significantly faster,
anywhere from 450x to more than 14,000x faster in tests.

TimeScaleDB

Performance

Performance

Performance

Performance

Recent data is more accessed

Data normalisation

• Trading off between normalised & denormalised data storage.

Single Table Design
Multiple Table Design

Ease of Use Easy Somewhat easy

Multi-Tenancy /
Privacy Regulations

Hard Easy

Future-Proofness Easy Somewhat hard

Tooling Support Easy Hard

Adaptive time-space chunking
• Chunk by two dimensions

• Time interval
• Primary key (e.g., server/device/asset ID)

• Design choices
• Fixed-duration interval
• Fixed-size chunk
• Adaptive interval > Hypertable in Timescale DB

• Inherit and adapt from PostgreSQL

• Materialized views

• Tiered storage

• Compression

• Design choices & optimizations specific to time-series data & TimescaleDB

• Partition pruning

• Continuous aggregates

Tuning & perf optimization in Timescale DB

Compression (generic)
• Dictionary compression / Page compression

• Compresses data by storing repeating values and common prefixes only once and then

making references.

• Compression in rowstores

• It takes fixed-length columns and makes them variable length, adding additional bytes for

the overhead of tracking the changes being made.

• Compression in columnstores

• Run length encoding >>

• What if multiple columns?

Compression in Timescale
• Simple but effective trick

Tiered storage

• Moving “cold” data to cheaper & slower storage

(e.g., AWS S3) saves costs (and your wallet).

• More useful for DB replicas.

Tiered storage

• User-defined tiering policy

• Query runtime: transparent to the users

• Partition pruning in much more effective for tiered storage!!

• Inherit and adapt from PostgreSQL

• Materialized views

• Tiered storage

• Compression

• Design choices & optimizations specific to time-series data & TimescaleDB

• Partition pruning

• Continuous aggregates

Tuning & perf optimization in Timescale DB

Partition pruning in Timescale

(This is by default)
The planner examines each partition
to see if it needs be scanned,
according to the WHERE clause .

Each partition is scanned .

Recall sequential vs index scans
• What if WHERE is on non-key column?

• Recall clustered index on key columns >> you end up in scanning all blocks

Any better?
• We can create a non-clustered index on order_id

 at the cost of storage overhead (37% in this case)

(Recall clustered vs. non-clustered) index

Chunk 1 Btree idx

Chunk 2 Btree idx

Chunk 3 Btree idx

idx scan

idx scan

idx scan

Still not enough? Partition pruning to the rescue

• Suppose we can skip chunks/blocks according to the WHERE clause

Chunk 1

Chunk 2

Chunk 3

skipped

skipped

scan

• Suppose we can skip chunks/blocks according to the WHERE clause

• But how? Unfortunately, this is not implemented in PostgreSQL

• Rule based, ML-based etc. [K. Rong, Y. Lu, P. Bailis, S. Kandula, P. Levis. Approximate Partition Selection for Big-Data Workloads using Summary Statistics. VLDB 2020.]

Chunk 1

Chunk 2

Chunk 3

skipped

skipped

scan

Still not enough? Partition pruning to the rescue

Materialized views

• Recall views and materialized views from PostgreSQL

• REFERSH MATERIALIZED VIEW

Continuous aggregates in Timescale

• Incremental, automatically updated materialized views (need update policy)

A step further: real-time views
Real-time continuous aggregates combine two parts:
• A materialized hypertable,
• A real-time view, which queries both the materialized

hypertable and the raw hypertable (in the not-yet-
aggregated region).

• We will use Timescale DB in later projects. Today’s Labs let’s quickly explore

InfluxDB instead.

• Compare design choices and tuning strategies among PostgreSQL, Influx and

Timescale.

Labs: try out InfluxDB (but not Timescale)

• Design DB & optimizations according to your data model and use case!

• Timescale is fun to learn, as a use case in expanding PostgreSQL for a
particular data model & use case.

• Many tricks and design patterns are transferrable.
• Tiered storage
• Partition pruning
• Materialized views

Take home notes

• Time series databases

 Labs on InfluxDB

• Streaming databases by NUS PhD alumni Yingjun Wu, CEO of RisingWave

 no Labs, explore on your own

Agenda

• Silu Huang, Bytedance

• TimeScale Blogs

Credits

	Slide 1: CS4221 Modern Databases I. Time-Series and Streaming Databases
	Slide 2: Agenda
	Slide 3: Time series data
	Slide 4: Time series data
	Slide 5: Time series data
	Slide 6: Popularity
	Slide 7: Most Popular TSDB
	Slide 8: InfluxDB
	Slide 9: InfluxDB
	Slide 10: InfluxDB
	Slide 11: InfluxDB
	Slide 12: InfluxDB
	Slide 13: InfluxDB
	Slide 14: InfluxDB
	Slide 15: InfluxDB: storage engine
	Slide 16: InfluxDB: storage engine
	Slide 17: InfluxDB: storage engine
	Slide 18: InfluxDB: TSM file
	Slide 19: InfluxDB: TSM file
	Slide 20: InfluxDB: misc.
	Slide 21: Why not PostgreSQL? (claimed)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Recent data is more accessed
	Slide 30: Data normalisation
	Slide 31: Adaptive time-space chunking
	Slide 32: Tuning & perf optimization in Timescale DB
	Slide 33: Compression (generic)
	Slide 34: Compression in Timescale
	Slide 35: Tiered storage
	Slide 36: Tiered storage
	Slide 37: Tuning & perf optimization in Timescale DB
	Slide 38: Partition pruning in Timescale
	Slide 39: Recall sequential vs index scans
	Slide 40: Any better?
	Slide 41: Still not enough? Partition pruning to the rescue
	Slide 42: Still not enough? Partition pruning to the rescue
	Slide 43: Materialized views
	Slide 44: Continuous aggregates in Timescale
	Slide 45: A step further: real-time views
	Slide 46: Labs: try out InfluxDB (but not Timescale)
	Slide 47: Take home notes
	Slide 48: Agenda
	Slide 49: Credits

