
CS4221
Modern Databases II.

Vector Databases

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

Recent vector databases

Motivation 1: vector embedding

0.03, 0.12, 0.01, ….

0.01, 0.01, 0.02, ….

0.02, 0.02, 0.03, ….

0.04, 0.11, 0.05, ….

0.11, 0.13, 0.01, ….

0.06, 0.01, 0.02, ….

0.02, 0.02, 0.03, ….

…

Unstructured Data Vectors Analytics in
Vector Space

Known as “vector embedding” (due to deep learning)

Motivation 2: large language models
• Vector DBs & RAGs address many critical limitations of LLMs

• Hallucination: incorrect or fabricated answer
• Lacking domain-specific knowledge
• Up-to-date information

https://zilliz.com/use-cases/llm-retrieval-augmented-generation

Vector DB RAG (Retrieval-Augmented
Generation)

https://zilliz.com/use-cases/llm-retrieval-augmented-generation

...

Top-k similar vectors

Key operator in vector DBs: vector similarity search

Billions of vectors

query (e.g., image)

Evolution of vector data(base)
1999

(Content-based
information retrieval)

2013
(Embedding)

2023
(LLM)

Locality-sensitive hash

Why are vector DBs challenging?

• Easy to get started, but very challenging to achieve high performance, accuracy,
and efficiency

• Three unique properties that contribute to the challenges of vector DBs
• Property P1: Curse of Dimensionality
• Property P2: Approximation
• Property P3: Advanced Vector Data Analytics

P1: Curse of dimensionality

All techniques fail on high-d space (for exact answers)
➔ approximate answer!

All vector DBs return approximate answer

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a

P1: Curse of dimensionality

Querying in high-dimensional space
➔ no locality ➔ hard to leverage tiered storage

Almost all vector DBs only use DRAM ➔ too expensive (in the cloud)

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a

P2: Approximation

• Approximation introduces a new design tradeoff (in addition to
performance and cost)
• Complicates system design
• Different from traditional databases
• Approximate query processing is still not the mainstream

• Many vector indexes are developed with different tradeoffs
• How to make the right tradeoff between CAP?

• Existing databases rely on users’ manual selection

P2: Approximation

• Need to consider approximation from the ground-up
• Index type selection
• Index parameter tuning
• Caching

• If there’s a cache miss, do you want to return current results or go to disk to
compute accurate answer?

• Compression
• Consistency
• Visibility
• …

P3: Advanced query processing

• Query is more than pure vector search
• Can contain filters (attribute filters / range filters), and other non-vector data

(e.g., relational / document / graph / spatial data)
• Necessary to support advanced RAGs

Finding the T-shirts similar to a
given image vector that also cost
less than $100 and have text
descriptions containing specific
keywords

Outline

• Introduction
• Main-memory vector index
• Disk-based vector index
• Generalized vector DBs
• Specialized vector DBs

Vector indexes (main memory)

• Quantization-based indexes
• E.g., IVF_FLAT, IVF_PQ

• Graph-based indexes
• E.g., NSW, HNSW

• Tree-based indexes
• Hash-based indexes

Widely used in
vector DBs

Quantization

• What’s quantization?
• A way of approximation

• Let’s look at quantization in 1-dimensional space
• 𝑄 𝑥 =

𝑥

10
, where x is an input value

• input = 3, 𝑄 3 =
3

10
= 0.3 = 0

• input = 3, 𝑄 91 =
91

10
= 9.1 = 9

• Those 99 integers can be quantized into a smaller set of 10
buckets

Quantization

• What’s quantization in high-dimensional space?
• It’s basically clustering, e.g., k-means

IVF_FLAT

• Index phase
• Cluster n vectors into K clusters (quantization)
• Centroids: c0…cK-1

• Search phase
• Given a query q, find the closest u clusters

based on centroids
• u: user-defined parameter

• Only scan the vectors in the u clusters

IVF_FLAT

• Question: how to quickly compute the similarity between q and a vector vi in
a cluster?

• Naïve approach
• A for-loop to compute dist(q,vi)
• d steps (where d is dimensionality, e.g., d = 1000)

• Better solutions?
• Remember, we know the centroid c
• We can pre-compute the distance of dist(c,vi)

• Then dist(q,vi) = dist(q,c) + dist(c,vi) (approx.)
• Only need 1 step to compute distance for all vi

q

v1

v2

vi

…

…

q

c vi

Compression

• How to reduce the space overhead of IVF_FLAT?
• Compression

• Example
• Youtube-8M data includes 1.4 billion vectors
• Each vector takes 1024 dimensions (each float takes 32 bits)
• 5.6TB space (memory!)

https://dl.acm.org/doi/10.14778/3424573.3424580

https://dl.acm.org/doi/10.14778/3424573.3424580

Compression: basic idea

• Instead of using 32 bits to represent a float
number

• Use L bits (e.g., L = 8)
• Think of 1-d quantization
• Every float number in a vector is quantized

into [0…2L-1]
• The 1.4billion vectors will take 1.4TB space

(if L = 8)

vector

Every float number is
mapped to [0…255]
(8 bits per number)

Compression: product quantization (PQ)

• How to further reduce the space
overhead?

• Product quantization (PQ)
• Key idea: compress between multiple

dimensions
• Every vector is partitioned into M

subvectors, e.g., M = 8
• Every subvector is compressed using L

bits (e.g., L = 8)

...

Compression: product quantization (PQ)

• How to compress subvectors?
• Each vector vi is partitioned into M subvectors 𝑣𝑖

0…𝑣𝑖
𝑀−1

• M subspace

• All the vectors in the same subspace are compressed together
using high-dimensional quantization (clustering)
• All 𝑣0

0, 𝑣1
0, 𝑣2

0…, 𝑣𝑛−1
0 are compressed together

• All 𝑣01, 𝑣11, 𝑣21…, 𝑣𝑛−11 are compressed together
• Every subvector is represented using the centroid ID

Compression: product quantization (PQ)

Every vector is split into 2 parts: head and tail vector
All the head vectors will be compressed together

All the tail vectors will be compressed together

K-means clustering
(every subvector is
encoded using the

centroid ID)

K-means clustering
(every subvector is
encoded using the

centroid ID)
...

Compression: product quantization (PQ)

https://dl.acm.org/doi/10.14778/3424573.3424580

Original vector is compressed as <5.00, 6.19, 9.10, 7.29>

https://dl.acm.org/doi/10.14778/3424573.3424580

Compression: product quantization (PQ)

• Each vector is compressed using M*L bits
• E.g., M = 8, L = 8

• Regardless of the dimensionality
• But the parameters can be tuned based on dimensionality

• Example: Consider the 1.4 billion vectors again
• Each vector will take 8*8 bits (M = 8, L = 8), i.e., 8 bytes
• The 1.4billion vectors will take 11.2GB space

Compression: product quantization (PQ)

• What’s the tradeoff? Space vs. accuracy

• Another benefit of PQ: Fast distance computation
• All the distance in subspace can be precomputed
• Example:

• Vector X → PQ code (3, 1)
• Vector Y → PQ code (1, 5)
• Dist(X,Y) = dist(3,1) + dist(1,5), where each part can be precomputed

IVF_PQ

• Similar as IVF_FLAT
• Difference is that

• Each cluster applies PQ
• using residual vectors

• Search process is the same

Graph-based vector index

• Key ideas
• For each vector, pre-compute the nearest neighbors
• Connect them using a graph
• Convert vector search problem to graph traversal problem

Graph-based vector index

• Navigable Small Worlds (NSW)
• Add new vertices to the index
• For each new vertex (vector), find the closest m neighbors seen so far and

connect with them
• Balance: index construction time & query performance

A

B

C

D

E

F

G

m = 2

A

B

C

D

E

F

G

Q

Entry point

Query point

Can be extended to kNN by maintaining a result set and a candidate set

Terminate if the max distance in the result set < min distance in the candidate set

Graph-based vector index

https://ieeexplore.ieee.org/abstract/document/9101583

K = 3Query

Candidate set
Result set

https://ieeexplore.ieee.org/abstract/document/9101583

Graph-based vector index

• Hierarchical Navigable Small Worlds (HNSW)
• Skip list + NSW
• Multi-layered NSW
• Address the “bad” entry point issue

• If the entry point is not selected
properly, the search path is long

https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf

https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf

Graph-based vector index

• Every layer is an NSW on the sampled
vertices

• Find the nearest vector in each layer,
which will serve as the entry point for
the next layer

• What if I choose a bad entry point from
the top layer?
• Slow, but acceptable
• As the num of points is small in top layer

Entry point

Layer 0

Layer 1

Layer 2

Layer 3

Entry point for layer 0
(much closer to query than a

randomly selected one)

Outline

• Introduction
• Main-memory vector index
• Disk-based vector index
• Generalized vector DBs
• Specialized vector DBs

Overview of disk-based vector indexes

• Motivation: existing memory-based vector indexes consume too much
memory (can be TBs of memory) to achieve high performance and recall

• Goal: reducing memory overhead while maintaining high performance and
recall

• DiskANN (NeurIPS 2019): graph-based
• SPANN (NeurIPS 2021): quantization-based
• Starling (SIGMOD’24): graph-based

NeurIPS 2021

https://www.microsoft.com/en-us/research/uploads/prod/2021/11/SPANN_finalversion1.pdf

Key ideas

• Based on quantization
• Clustering the vectors into buckets (aka posting lists)

• But the buckets are overlapped a bit (for optimizations)

• Centroids are stored in memory (organized by SPTAG index)
• SPTAG: A tree-based index structure

• Posting lists are stored on disk

Key ideas

• Memory layer: SPTAG (for centroids)
• Disk layer: posting lists
• Search process

• Search m nearest centroids
from in-memory SPTAG

• Load those m posting lists
from disk

Optimizations in SPANN

• How to reduce disk access?
• Some posting lists can be very long

• Solution
• Partition the entire vectors into a large number of posting lists (so that

each list is not very long)
• Use multi-constraint balanced clustering to make sure some posting lists

are not too long

Optimizations in SPANN

• How to improve recall?
• Quantization-based indexes are difficult to achieve high recall

• Solution
• Replicate boundary vectors into multiple posting lists
• Overlapped clustering
• How?

Green vectors are duplicated in
two nearby clusters

Optimizations in SPANN

• Assign a vector to multiple closest clusters instead of only the
closest one if the distance between the vector and these clusters
are nearly the same

Nearest one

Optimizations in SPANN

• How many posting lists to load for a given query?
• Different queries may need different number

• Solution: query-aware dynamic pruning
• Observation: Some queries only need to search several posting lists to

find true neighbors, while some search a lot

80% of queries only need to
search 6 posting lists

Optimizations in SPANN

• Query-aware dynamic pruning
• Instead of searching closest m posting lists for all queries, dynamically

decide a posting list to be searched only if the distance between its
centroid and query is almost the same as the distance between query and
the closest centroid

Nearest one

NeurIPS 2019

https://suhasjs.github.io/files/diskann_neurips19.pdf

Key ideas

• Graph-based index
• Disk layer: Graph structure

• Graph structure is similar to HNSW (called Vamana)
• With full-precision vectors
• Structure: vector itself followed by adjacent vector IDs

• Memory layer: Compressed vectors
• PQ-compressed vectors

Outline

• Introduction
• Main-memory vector index
• Disk-based vector index
• Generalized vector DBs
• Specialized vector DBs

Vector databases: specialized vs. generalized

• Specialized vector databases
• Explicitly designed for vector data

• Generalized vector databases
• Support vector search within relational databases
• One-size-fits-all

Vector search in PostgreSQL

PgVector
v0.1.0
IVFFlat

PgEmbedding
v0.3.0
HNSW

PgVector
V0.5.0
HNSW

Timescale Vector

DiskANN

2021.04 2023.07.31

…

2023.08.28 2023.09.252022.08

PASE
IVFFlat
HNSW SPANN, HNSW,

IVF

VBase

2023.11

Vector search in PostgreSQL

SIGMOD’20

pgvector is similar to PASE

https://dl.acm.org/doi/abs/10.1145/3318464.3386131

PASE
• Key ideas

• Store vectors in a separated column
• Build high-d indexes on that vector column
• Similar to B-trees on other columns
• Intuitively, should have very high performance

ID (Int Type) Vector (Array Type)

0 [0.1, 0.5, 0.6, 0.3]

1 [0.3, 0.2, 0.9, 0.1]

2 [0.5, 0.5, 0.3, 0.4]

3 [0.9, 0.1, 0.3, 0.2]

4 [0.6, 0.4, 0.3, 0.8]

Challenges in PASE

• How to make the newly-built high-d index recognizable by the SQL
query optimizer?

• How to configure the internal parameters of high-d indexes?
• How to define and specify similarity functions?
• How to represent vector search using SQL?

PASE architecture

SQL layer of PASE

• Extend SQL syntax for vector search

<op> is a special operator to compute the similarity between two vectors.

Index layer of PASE

Sampling ratio: 10/1000
256: # of clusters in IVF_FLAT

Index Layer of PASE

• To be recognizable by SQL optimizer:
• Implement certain index interfaces, e.g., build(), insert(), delete(), scan(),

via PG’s IndexAmRoutine()
• The index needs to follow PG’s index page structure in order to be

accessed via the buffer manager and storage engine

• These restrictions can affect performance

Storage layer of PASE

• Store vector data same as other attributes in a table
• Tables and indexes are stored on disk, but frequently accessed

pages are cached in memory via the buffer manager

How We Made PostgreSQL a Better Vector Database (timescale.com)

https://www.timescale.com/blog/how-we-made-postgresql-the-best-vector-database/?utm_campaign=vectorlaunch&utm_source=timescale-ai&utm_medium=direct&utm_content=timescale-ai

Timescale-vector

➔ Inspired by DiskANN[1] (Optimized for disk)
◆ On-disk data layout

● Cluster each node vector with its neighboring links

◆ Single layer graph can further augment the cache’s efficiency
● Unlike HNSW’s hierarchical structure

Vector (1536 dimension) Neighbors (64 degree)

1536 * 4 = 6KB 64 * 4 = 256 Bytes

[1]Jayaram Subramanya, Suhas, et al. "Diskann:
Fast accurate billion-point nearest neighbor
search on a single node." Advances in Neural
Information Processing Systems 32 (2019).

Outline

• Introduction
• Main-memory vector index
• Disk-based vector index
• Generalized vector DBs
• Specialized vector DBs

SIGMOD 2021

https://www.cs.purdue.edu/homes/csjgwang/pubs/SIGMOD21_Milvus.pdf

Motivation

• The motivation in 2021 was different from today
• ❶ Explosive growth of unstructured data
• ❷ Vector embedding is everywhere (e.g., item2vec, word2vec, doc2vec,

graph2vec)

• Research question
• How to efficiently manage large-scale vector data?

Requirements

• Efficiency
• Large-scale vector data
• Dynamic vector data management

• Advanced query semantics
• Vector similarity search
• Attribute filtering (filtered vector search)
• Multi-vector search

Applications

MemTable

MemTable

Query Processing

IndexingBuffer pool
Memory

Persistent
Storage

Small
Segments

Small
Segments

Large Segments

Multi-storage (S3/HDFS/…) Snapshot Management

…

…

Data insert

Attributes

… …

Indexes

Collection A Collection B …

Flush

Data Compaction

Load Original data Index

Vector search Attribute filtering Multi-vector query

Cache- & SIMD-aware Heterogenous Acceleration
Request Handler

IVF_FLAT IVF_PQ

HNSW …

Vectors

Query

Systems overview

Cache-aware design: naïve solution

• m queries, n vectors, t threads,
find for each vector its top-k
• Basic operation in scanning a

bucket

• Naïve solution
• Assign one query to a thread every

time
• Compare query vector with all data

vectors

• Limitations
• High cache miss rate
• Limited parallel when m is small

thread T0

thread T1

…

thread Tt-1

heaps

H0

H1

Ht-1

query vectors

q0

q1

qt-1

data vectors

… … …

v0

v1

v2

v3

v4

vn…

qt+0

qt+1

qm

…

Cache-aware design in Milvus

• Divide both data vectors and query
vectors into blocks

• Process one query vector block per
time

• Similar to block nested loop join
• Query block: inner loop
• Data block: outer loop

• Assign data vector blocks to threads
(usually n > m)

• One heap per thread per query
vector (avoid lock)

Memory L3 Cache L3 Cache

SIMD-aware optimizations

• Milvus supports SIMD SSE, AVX, AVX2, and AVX512
• Automatic SIMD-instruction selection

• Challenge: how to make it automatically invoke the suitable SIMD instructions on any
CPU processor?

• Faiss: users need to manually specify the SIMD flag during compilation time
• Milvus factors out the common functions (e.g., similarity computing) that rely on SIMD

accelerations
• Also, for each function, it implements four versions (i.e., SSE, AVX, AVX2, AVX512) and

puts each one into a separated source file, which is further compiled individually with
the corresponding SIMD flag

CPU and GPU co-design for vector search

• Limitations in the GPU design in Faiss
• The PCIe bandwidth is not fully utilized, e.g., our experiments show that

the measured I/O bandwidth is only 1∼2GB/s while PCIe 3.0 supports up
to 15.75GB/s

• It is not always beneficial to execute queries on GPU (than CPU)
considering the data transfer

CPU and GPU co-design for vector search

• Addressing limitation 1
• Copy multiple buckets from CPU to GPU every time (while Faiss copies

buckets one by one)

• Addressing limitation 2
• Observation: GPU outperforms CPU if the query batch size is large

enough considering the expensive data movement

CPU and GPU co-design for vector search

• CPU-GPU co-design

Higher ratio of
computation-to-I/O

Multi-vector search

• In some applications, each entity has multiple vectors
• E.g., each person is described using multiple vectors to describe the front

face, side face, and posture

• Another source of multi-vector is
using multiple embedding models
to represent the same object

https://butterflymx.com/blog/multi-camera-security-system/

https://butterflymx.com/blog/multi-camera-security-system/

Multi-vector search

• Problem
• Both data entries v and queries q contain m vectors. Given a vector

similarity function f and a score aggregation function g, find k entries with
highest score value:

• E.g., g can be weighted sum

𝑔(𝑓 𝑣1, 𝑞1 , 𝑓 𝑣2, 𝑞2 , … , 𝑓(𝑣𝜇, 𝑞𝜇))

Multi-vector search

• Vector fusion
• Merge the multiple subvectors into a single vector
• Perform regular vector search
• However, it requires the similarity function is decomposable, e.g., dot

product

𝑔 𝑓 𝑣1, 𝑞1 , 𝑓 𝑣2, 𝑞2 , … , 𝑓 𝑣𝜇 , 𝑞𝜇

= 𝑓 ℎ 𝑣1, … , 𝑣𝜇 , ℎ′ 𝑞1, … , 𝑞𝜇

f: inner product
g: weighted sum

h: concatenation,
h’: weighted concatenation

Multi-vector search

• Use Fagin’s algorithm
• But it relies on getNext(), which is

inefficient on vector index
• Milvus develops an iterative merging

algorithm that bypasses getNext()

https://www.sciencedirect.com/science/article/pii/S0022000003000266

https://www.sciencedirect.com/science/article/pii/S0022000003000266

Multi-vector search

• Search top-k’ result for each q.subvector
• Try to find results with Fagin's algorithm (NRA)
• If k results can be determined

• Return results

• Otherwise
• Increase k’ and repeat

Credits

• Jianguo Wang, Purdue

• Silu Huang, ByteDance

	Slide 1: CS4221 Modern Databases II. Vector Databases
	Slide 2: Recent vector databases
	Slide 3: Motivation 1: vector embedding
	Slide 4: Motivation 2: large language models
	Slide 5: Key operator in vector DBs: vector similarity search
	Slide 6: Evolution of vector data(base)
	Slide 7: Why are vector DBs challenging?
	Slide 8: P1: Curse of dimensionality
	Slide 9: P1: Curse of dimensionality
	Slide 10: P2: Approximation
	Slide 11: P2: Approximation
	Slide 12: P3: Advanced query processing
	Slide 13: Outline
	Slide 14: Vector indexes (main memory)
	Slide 15: Quantization
	Slide 16: Quantization
	Slide 17: IVF_FLAT
	Slide 18: IVF_FLAT
	Slide 19: Compression
	Slide 20: Compression: basic idea
	Slide 21: Compression: product quantization (PQ)
	Slide 22: Compression: product quantization (PQ)
	Slide 23: Compression: product quantization (PQ)
	Slide 24: Compression: product quantization (PQ)
	Slide 25: Compression: product quantization (PQ)
	Slide 26: Compression: product quantization (PQ)
	Slide 27: IVF_PQ
	Slide 28: Graph-based vector index
	Slide 29: Graph-based vector index
	Slide 30: Graph-based vector index
	Slide 31
	Slide 32: Graph-based vector index
	Slide 33: Graph-based vector index
	Slide 34: Outline
	Slide 35: Overview of disk-based vector indexes
	Slide 36
	Slide 37: Key ideas
	Slide 38: Key ideas
	Slide 39: Optimizations in SPANN
	Slide 40: Optimizations in SPANN
	Slide 41: Optimizations in SPANN
	Slide 42: Optimizations in SPANN
	Slide 43: Optimizations in SPANN
	Slide 44
	Slide 45: Key ideas
	Slide 46
	Slide 47: Outline
	Slide 48: Vector databases: specialized vs. generalized
	Slide 49: Vector search in PostgreSQL
	Slide 50: Vector search in PostgreSQL
	Slide 51: PASE
	Slide 52: Challenges in PASE
	Slide 53: PASE architecture
	Slide 54: SQL layer of PASE
	Slide 55: Index layer of PASE
	Slide 56: Index Layer of PASE
	Slide 57: Storage layer of PASE
	Slide 58
	Slide 59: Timescale-vector
	Slide 60: Outline
	Slide 61
	Slide 62: Motivation
	Slide 63: Requirements
	Slide 64: Systems overview
	Slide 65: Cache-aware design: naïve solution
	Slide 66: Cache-aware design in Milvus
	Slide 67
	Slide 68: SIMD-aware optimizations
	Slide 69: CPU and GPU co-design for vector search
	Slide 70: CPU and GPU co-design for vector search
	Slide 71: CPU and GPU co-design for vector search
	Slide 72: Multi-vector search
	Slide 73: Multi-vector search
	Slide 74: Multi-vector search
	Slide 75: Multi-vector search
	Slide 76: Multi-vector search
	Slide 77: Credits

