CS4221
Modern Databases ll.
Vector Databases

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

Recent vector databases

(%3 Pinecone <{® Milvus N @ chroma

Faiss
Qdrant (g Weaviste N Vespa ClickHouse
o~ N ¢ R
oAl & ©AlloyDB - té,
O SinqleStore Azure SQL nalyticDB
0 MongoDB. < = red|5
Atlas POStgreSQL databricks

cassandra

a Alipay m» elasticsearch ~ OpenSearch W
' T —

Motivation 1: vector embedding

Unstructured Data Vectors Analytics in
Vector Space

0.03,0.12,0.01,

0.01, 0.01,0.02,

0.02,0.02,0.03,

0.04,0.11, 0.05,

.
\ .
N
] . . >
A /\. @
.
L V| 2
° \ il .
[/r/’ .
° | A . .
P L
) . & T
\ e | ®
\ \, A
\ o \ -~ > \
L “ /Y) e
-\ / L] [
e o |°®
.

0.11,0.13, 0.01,

0.06, 0.01, 0.02,

0.02,0.02, 0.03,

Known as “vector embedding” (due to deep learning)

Motivation 2: large language models

* Vector DBs & RAGs address many critical limitations of LLMs
* Hallucination: incorrect or fabricated answer
* Lacking domain-specific knowledge
* Up-to-date information

Prompt

“Answer the question
using the additional
context:

{user Question}
{Retrieved Doc 1}

User Question ©
0

o———> | LUIM 0————— | Answer

{Retrieved Doc n}”

aizcouds \ector DB RAG (Retrieval-Augmented
- Generation)

Similarity
Search

Private Data [Domain-Specific Knowledge
| Up-To-Date Information

https://zilliz.com/use-cases/llm-retrieval-augmented-generation

https://zilliz.com/use-cases/llm-retrieval-augmented-generation

Key operator in vector DBs: vector similarity search

query (e.g., image)

Top-k similar vectors

Billions of vectors

Evolution of vector data(base

1999

(Content-based
information retrieval)

Similarity Search in High Dimensions via Hashing

ARISTIDES GIONIS * PioTr INDYK! RAJEEV MoTwaNT
Department of Computer Science
Stanford University
Stanford, CA 94305

{gionis, indyk,rajeev}@cs.stanford.edu

Locality-sensitive hash

2013
(Embedding)

Efficient Estimation of Word Representations in

Vector Space

Tomas Mikolov
Google Inc., Mountain View, CA
tmikolov@google.com

Greg Corrado
Google Inc., Mountain View, CA

gcorrado@google.com

Kai Chen
Google Inc., Mountain View, CA
kaichenlgoogle.com

Jeffrey Dean
Google Inc., Mountain View, CA
jeff@google.com

2023
(LLM)

Retrieval @ OpenAl

The open-source retrieval plugin enables ChatGPT to access personal or
organizational information sources (with permission). It allows users to
obtain the most relevant document snippets from their data sources, such
as files, notes, emails or public documentation, by asking questions or
expressing needs in natural language.

As an open-source and self-hosted solution, developers can deploy their
own version of the plugin and register it with ChatGPT. The plugin
leverages OpenAl embeddings and allows developers to choose

or indexing
and searching documents. Information sources can be synchronized with
the database using webhooks.

Why are vector DBs challenging?

* Easy to get started, but very challenging to achieve high performance, accuracy,
and efficiency

* Three unique properties that contribute to the challenges of vector DBs
* Property P1: Curse of Dimensionality
* Property P2: Approximation
* Property P3: Advanced Vector Data Analytics

P1: Curse of dimensionality

Y9009
wlalalsla
IGEEER
Slalalala
99993 DI
=g Fo-
X X

All techniques fail on high-d space (for exact answers)
=» approximate answer!

All vector DBs return approximate answer

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a

P1: Curse of dimensionality

Y33090907

539899

| 8666

Slalalala

9909095, alalalal=]

X

X

Querying in high-dimensional space
=» no locality = hard to leverage tiered storage

Almost all vector DBs only use DRAM =» too expensive (in the cloud)

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a

P2: Approximation

* Approximation introduces a new design tradeoff (in addition to
performance and cost)
* Complicates system design
* Different from traditional databases
* Approximate query processing is still not the mainstream

* Many vector indexes are developed with different tradeoffs

« How to make the right tradeoff between CAP? e
* Existing databases rely on users’ manual selection

Performance Accuracy

P2: Approximation

* Need to consider approximation from the ground-up
* Index type selection
* Index parameter tuning
* Caching

* Ifthere’s a cache miss, do you want to return current results or go to disk to
compute accurate answer?

« Compression
* Consistency
* Visibility

P3: Advanced query processing

Finding the T-shirts similar to a
given image vector that also cost
less than $100 and have text

R g — & |
A5

Rhone Men's Commuter FAHIZO Men's Dress Mizzen + Main Men's Rhone Men's Delta Pique Mizzen + Main Men's

Classic Fit Long Sleeve Shirt Regular Fit Casual Performance Dress Shirt Polo, Breathable, Quick- Performance Dress Shirt d e S C rl pt I O n S C O nta I n I n g S p e C Ifl C
Dress Shirt, Button Long Sleeve Bamboo Classic Fit - Machine Dry, Cooling Tech Fabric ~ Trim Fit - Machine Wash,
Down, Four-Way Str... Stretch Solid Shirts... Wash, Four-Way St... with GoldF... Four-Way Stret... k d
sofokoiok 2 Yok i iy 472 $1 18.00 prime Aok Rk dr 33 $1 38.00 prime eyWO r S
$138.00 prime $32.99 prime Prime Try Before You $88.00 Prime Try Before You
Buy Buy

* Queryis more than pure vector search

* Can contain filters (attribute filters / range filters), and other non-vector data
(e.g., relational / document / graph / spatial data)

* Necessary to support advanced RAGs

Outline

* Main-memory vector index
* Disk-based vector index

* Generalized vector DBs

* Specialized vector DBs

Vector indexes (main memory)

* Quantization-based indexes
 E.g., IVF_FLAT, IVF_PQ

* Graph-based indexes
e E.g., NSW, HNSW

* Tree-based indexes

Widely used in
vector DBs

e Hash-based indexes

Quantization

* What’s quantization?
* A way of approximation

* Let’s look at quantization in 1-dimensional space

* Q(x) = Lio‘,wherexis an input value

« input =3, 0(3) = Li()‘ —103] =0
- input=3,Q(91) = || = 9.1] = 9

* Those 99 integers can be quantized into a smaller set of 10
buckets

19,
90,
91,

L 99 .

Quantization

* What’s quantization in high-dimensional space?
* |t’s basically clustering, e.g., k-means

IVF_FLAT

* Index phase
* Cluster nvectors into K clusters (quantization)
* Centroids: c,...Cy

* Search phase

* Given a query g, find the closest u clusters
based on centroids

* u:user-defined parameter
* Only scan the vectors in the u clusters

IVF_FLAT

* Question: how to quickly compute the similarity between q and a vector v, in
a cluster?

* Naive approach q
* Afor-loop to compute dist(q,v;) (V; h
* d steps (where d is dimensionality, e.g., d =1000) q
V2

* Better solutions?
* Remember, we know the centroid ¢
* We can pre-compute the distance of dist(c,Vv;) V.

* Then dist(q,v;) = dist(q,c) + dist(c,v;) (approx.)
* Only need 1 step to compute distance for all v,

Compression

* How to reduce the space overhead of IVF_FLAT?
« Compression

* Example
* Youtube-8M data includes 1.4 billion vectors
* Each vector takes 1024 dimensions (each float takes 32 bits)
* 5.6TB space (memory!)

https://dl.acm.org/doi/10.14778/3424573.3424580

https://dl.acm.org/doi/10.14778/3424573.3424580

Compression: basic idea

number
Use L bits (e.g., L = 8)
Think of 1-d quantization

Instead of using 32 bits to represent a float \1

sennsnns

Every float numberis
Every float number in a vector is quantized mapped to [0...255]
into [0...25-1] (8 bits per number)

* The 1.4billion vectors will take 1.4TB space
(if L =8)

Compression: product quantization (PQ)

* How to further reduce the space
overhead?

* Product quantization (PQ)

* Keyidea: compress between multiple
dimensions

* Every vector is partitioned into M
subvectors, e.g.,M=8

* Every subvector is compressed using L
bits (e.g., L =8)

Compression: product quantization (PQ)

* How to compress subvectors?

« Each vector v; is partitioned into M subvectors v}...v}1 ™1

* M subspace

* All the vectors in the same subspace are compressed together

using high-dimensional quantization (clustering)

« Allvg, v7, v3..., vp_, are compressed together

« Allv}, vi, va..., vi_4 are compressed together

* Every subvector is represented using the centroid ID

Compression: product quantization (PQ)

K-means clustering

(every subvector is

encoded using the
centroid ID)

\

-

_

B

g

\

|

K-means clustering

(every subvector is

encoded using the
centroid ID)

Every vector is split into 2 parts: head and tail vector
All the head vectors will be compressed together

All the tail vectors will be compressed together

Compression: product quantization (PQ)

subspace 1

1
clo
e %o %, 0

* o+]

<5.53, 7.65, 9.04, 6.80> ——

c%o.. c%...

subspace 2

e Py +.. .

c

|

e + o
4
°? ® ..cz

"
the subvector
in subspace 1

Y
the subvector
in subspace 2

Ci:=<2.25,2.51> | (C}:=<9.10,7.29>
C?:.=<8.35,0.37> | C2:=<7.76,1.98>
C3:=<5.00,6.19> | C3:=<0.98, 6.36>
Ct:=<8.86,5.00>) Cj:=<1.29,0.60>

PQ-code: (3, 1)

indexes of nearest centroids in
each subspace (C; and C; resp.)

Original vector is compressed as <5.00, 6.19, 9.10, 7.29>

https://dl.acm.org/doi/10.14778/3424573.3424580

https://dl.acm.org/doi/10.14778/3424573.3424580

Compression: product quantization (PQ)

* Each vector is compressed using M*L bits
«Eg.,M=8,L=8

* Regardless of the dimensionality
* But the parameters can be tuned based on dimensionality

* Example: Consider the 1.4 billion vectors again
* Each vector will take 8*8 bits (M =8, L=8), i.e., 8 bytes
* The 1.4billion vectors will take 11.2GB space

Compression: product quantization (PQ)

* What’s the tradeoff? Space vs. accuracy

* Another benefit of PQ: Fast distance computation
* Allthe distance in subspace can be precomputed

* Example:
* Vector X 2> PQ code (3, 1)
* VectorY =2 PQ code (1, 5)
* Dist(X,Y) =dist(3,1) + dist(1,5), where each part can be precomputed

IVF_PQ

e Similar as IVF_FLAT

* Difference is that
* Each cluster applies PQ
* using residual vectors

* Search process is the same

Original vector
N X ATY5) W) o o

Centroid

Original
L] vectaor
® B
Lo
] P _‘:%\5\4
o
]
L]

Centroid

Residual vector = Original vector - Centroid
(oafosfon] . [. [-[-[-]-~

Database Vectors

v

Compute
Residuals

v

Residual Vectors

PQ Codebook

Additional steps with
the incorporation of the
inverted file index

PQ Codes
S000000 0 | —
Encode }% — EE %
(oo

Add entry to
Inverted List

Graph-based vector index

* Key ideas
* For each vector, pre-compute the nearest neighbors
* Connectthem using a graph
* Convert vector search problem to graph traversal problem

Graph-based vector index

* Navigable Small Worlds (NSW)

 Add new vertices to the index

* For each new vertex (vector), find the closest m neighbors seen so far and
connect with them

* Balance: index construction time & query performance

E G/C\B
i o

Graph-based vector index

Query point Q

Entry point

Can be extended to kNN by maintaining a result set and a candidate set

Terminate if the max distance in the result set < min distance in the candidate set

,¢ Candidate set

x’ Result set

Initialization q: 1 -
topk: @ 4%
visited: 1
[teration 1 qg:- 2745
topk: 1
visited: 12457
[teration 2 g: 87345
topk: 1 2
visited: 1234578
[teration 3 qg: 73451413
topk: 128
visited: 123457 8 13 14
[teration 4 q- 34561413
topk: 728
visited: 1234567813 14

K=3

https://ieeexplore.ieee.org/abstract/document/9101583

https://ieeexplore.ieee.org/abstract/document/9101583

Graph-based vector index

* Hierarchical Navigable Small Worlds (HNSW)
* Skip list + NSW
e Multi-layered NSW

* Address the “bad” entry point issue

* |f the entry point is not selected
properly, the search path is long Layer=1

Layer=2

Decreasing characteristic radius

Layer=0

<

https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf

https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf

Graph-based vector index ,
Entry point

Query Oing /

* Every layer is an NSW on the sampled ®
vertices / e Layer 3
* Find the nearest vector in each layer, / o o /dyerz
which will serve as the entry point for ° ®
the next layer / . .1 . /
* What if | choose a bad entry point from ® o O Layer 1
the top layer?
* Slow, but acceptable / o ® .. ® %er 0

* As the num of points is small in top layer
Entry point for layer 0

(much closer to query than a
randomly selected one)

Outline

 Disk-based vector index
e Generalized vector DBs
* Specialized vector DBs

Overview of disk-based vector indexes

* Motivation: existing memory-based vector indexes consume too much
memory (can be TBs of memory) to achieve high performance and recall

* Goal: reducing memory overhead while maintaining high performance and
recall

* DiskANN (NeurlPS 2019): graph-based
* SPANN (NeurlPS 2021): quantization-based
e Starling (SIGMOD’24): graph-based

SPANN: Highly-efficient Billion-scale Approximate
Nearest Neighbor Search

Qi Chen'* Bing Zhao"*" Haidong Wang! Mingqin Li'! Chuanjie Liu®> T
Zengzhong Li' Mao Yang! Jingdong Wangh % = 1
'Microsoft ~ Peking University ~ *Tencent *Baidu
!{cheqi, haidwa, minggli, jasol, maoyang } @microsoft.com
%its.bingzhao @pku.edu.cn “liu.chuanjie@outlook.com “*wangjingdong @ outlook.com

NeurlPS 2021

https://www.microsoft.com/en-us/research/uploads/prod/2021/11/SPANN_finalversion1.pdf

Key ideas

* Based on quantization

* Clustering the vectors into buckets (aka posting lists)
* Butthe buckets are overlapped a bit (for optimizations)

* Centroids are stored in memory (organized by SPTAG index)
* SPTAG: A tree-based index structure

* Posting lists are stored on disk

Key ideas

* Memory layer: SPTAG (for centroids)

* Disk layer: posting lists

* Search process

e Search m nearest centroids
from in-memory SPTAG

* Load those m posting lists
from disk

(Memory Layer /. (] '

—— e o o =

1
1
1
1
1
1
1
1
1
1
\

Disk Layer

- ————

T e e e o e e e mm e mm e mm e e e mm mm e mm mm mm e e e e e e e e e mm e e e e e e e o

Optimizations in SPANN

* How to reduce disk access?
* Some posting lists can be very long

* Solution
* Partition the entire vectors into a large number of posting lists (so that
each listis not very long)
* Use multi-constraint balanced clustering to make sure some posting lists
are not too long

Optimizations in SPANN

* How to improve recall?
* Quantization-based indexes are difficult to achieve high recall

* Solution
* Replicate boundary vectors into multiple posting lists
* Overlapped clustering
* How?

.......

" .
''''''
''''''

Green vectors are duplicated in
two nearby clusters

Optimizations in SPANN

* Assign a vector to multiple closest clusters instead of only the
closest one if the distance between the vector and these clusters
are nearly the same

Nearest one

X & X?;j N —— DiSt(X, C@'j) < (1 + 61) X DiSt(X: Cz’l)a/v
Dist(x, c;1) < Dist(x,c;2) < --- < Dist(x, c;jx)

Optimizations in SPANN

* How many posting lists to load for a given query?
* Different queries may need different number

* Solution: query-aware dynamic pruning

* Observation: Some queries only need to search several posting lists to
find true neighbors, while some search a lot

100+ 4114, 99.02%)
90 2, 90.48%)

6, 81.78%)

80 -

Queries (%)

70- 80% of queries only need to
60 search 6 posting lists
50 - —— recall@l = 100%

0 20 40 60 80 100 120 140
#visited postings

Optimizations in SPANN

* Query-aware dynamic pruning
* Instead of searching closest m posting lists for all queries, dynamically
decide a posting list to be searched only if the distance between its
centroid and query is almost the same as the distance between query and

the closest centroid

Nearest one

q Sﬂh X,;; <= Dist(q,c;;) < (1+ €2) x Dist(q, c;1),
DlSt(qv C’il) § DlSt(qa C’i2) g T é DISt(qa ciK)

DiskANN: Fast Accurate Billion-point Nearest
Neighbor Search on a Single Node

Suhas Jayaram Subramanya™ Devvrit* Rohan Kadekodi™
Carnegie Mellon University University of Texas at Austin ~ University of Texas at Austin
suhas@cmu. edu devvrit.03@gmail.com rakQcs.texas.edu
Ravishankar Krishaswamy Harsha Vardhan Simhadri
Microsoft Research India Microsoft Research India
rakri@microsoft.com harshasi@microsoft.com

NeurlPS 2019

https://suhasjs.github.io/files/diskann_neurips19.pdf

Key ideas

* Graph-based index
* Disk layer: Graph structure
* Graph structure is similar to HNSW (called Vamana)
* With full-precision vectors
» Structure: vector itself followed by adjacent vector IDs

* Memory layer: Compressed vectors
* PQ-compressed vectors

Result list

Compressed vectors

Memory Layer Id: 0, PQ vector: [5.1, ..., 0.3]

Id: 3 1d: 6 1d: 2 Id: 1, PQ vector: [0.2, ..., 6.6]
Dist: 1.0 Dist: 2.0 Dist: 3.0

l
|
|
|
|
|
|
|
\

|d: 9, PQ vector: [0.4, ..., 3.1]

_——— = == == ——

Outline

* Generalized vector DBs
* Specialized vector DBs

Vector databases: specialized vs. generalized

* Specialized vector databases 3 Pinecone 00

* Explicitly designed for vector data
@» Milvuys Faiss

e Generalized vector databases
* Support vector search within relational databases
* One-size-fits-all

Postgre SQL O Sl“QIEStOre a AI ipay @

Vector search in PostgreSQL

O alipay / PASE

o pgvector / pgvector

NEON

@ Timescale

O neondatabase / pg_embedding

O microsoft /| MSVBASE

% Fork 249 v 77 Star 6.1k % Fork 22 v Yy Star 486 ~
PgVector PASE PgEmbedding PgVector Timescale Vector VBase
v0.1.0 IVFElat v0.3.0 V0.5.0
IVFFlat HNSW HNSW DiskANN
| HI.T.SW | | | SPANN, I—INSV\{,
| I I I IVF I
2021.04 2022.08 2023.07.31 2023.08.28 2023.09.25 2023.11

Vector search in PostgreSQL

pgvector is similar to PASE

PASE: PostgreSQL Ultra-High-Dimensional
Approximate Nearest Neighbor Search Extension

Wen Yang Tao Li Gai Fang Hong Wei
Ant Financial Ant Financial Ant Financial Ant Financial
yangwen.yw@antfin.com lyee lit@antfin.com fanggaifg@alibaba-inc.com weihong.wh@antfin.com

SIGMOD’20

https://dl.acm.org/doi/abs/10.1145/3318464.3386131

PASE

* Key ideas
e Store vectors in a separated column
* Build high-d indexes on that vector column
e Similar to B-trees on other columns
* Intuitively, should have very high performance

ID (Int Type) Vector (Array Type)

0 [0.1,0.5, 0.6, 0.3]
[0.3,0.2,0.9,0.1]
[0.5,0.5, 0.3, 0.4]
[0.9,0.1,0.3,0.2]
[0.6,0.4,0.3, 0.8]

A WON -

Challenges in PASE

* How to make the newly-built high-d index recognizable by the SQL
query optimizer?

* How to configure the internal parameters of high-d indexes?
* How to define and specify similarity functions?

* How to represent vector search using SQL?

PASE architecture

| sat
SQL Layer [SQL Query Optimizer]
/ PG IndexAmRoutine \
Btree interface PASE mdex mterface
Index Layer build || scan | build || scan |

Btree pages PASE mdex pages)
IVF FLAT IVF PQ HNSW

T
Storage Layer [. Table | ~ Buffer]

SQL layer of PASE

* Extend SQL syntax for vector search

CREATE TABLE T (id int, vec floatl[l]);

SELECT id
FROM T

ORDER BY vec <op> '0.1,0.2,0.3,0.4"'::PASE ASC
LIMIT 10;

<op>is a special operator to compute the similarity between two vectors.

Index layer of PASE

CREATE INDEX ivfflat_idx ON T
USING 1ivfflat_fun(vec)
WITH (distance_type = 0, dimension = 128,
clustering_params = "10,256"),;

Sampling ratio: 10/1000
256: # of clusters in IVF_FLAT

Index Layer of PASE

* To be recognizable by SQL optimizer:

* Implement certain index interfaces, e.g., build(), insert(), delete(), scan(),
via PG’s IndexAmRoutine()

* The index needs to follow PG’s index page structure in order to be
accessed via the buffer manager and storage engine

* These restrictions can affect performance

Storage layer of PASE

e Store vector data same as other attributes in a table

* Tables and indexes are stored on disk, but frequently accessed
pages are cached in memory via the buffer manager

L — S

25 Sep 2023

Try Timescale Vector HOW We Made POStgreSQL d Better bedcs
Vector Database

Applications

Get started for free

Postgr

Contributors
Avthar Sewrathan

Matvey Arye

Samuel Gichohi

: Maheedhar PV
Timescale vector "

1252.20

(DiskANN) Share
All posts v
pgvector HNSW
Al ﬂﬂ
Announcements
Weaviate
Cloud
Developer Q&A
: - _embedding HNSW
Engineering P9 9
General
Grafana pg vector ivfflat

Observability

PostgreSQL , . _ . ,
Introducing Timescale Vector, PostgreSQL++ for production Al applications. Timescale Vector enhances

Product Updates pgvector with faster search, higher recall, and more efficient time-based filtering, making PostgreSQL your new

How We Made PostgreSQL a Better Vector Database (timescale.com)

https://www.timescale.com/blog/how-we-made-postgresql-the-best-vector-database/?utm_campaign=vectorlaunch&utm_source=timescale-ai&utm_medium=direct&utm_content=timescale-ai

Timescale-vector

-» Inspired by DiskANNm (Optimized for disk)

¢ On-disk data layout
« Cluster each node vector with its neighboring links

¢ Single layer graph can further augment the cache’s efficiency
o Unlike HNSW’s hierarchical structure

1536 * 4 = 6KB 64 * 4 = 256 Bytes

\ \ }
| |

Vector (1536 dimension) Neighbors (64 degree)

Outline

* Introduction

* Main-memory vector index
* Disk-based vector index

* Generalized vector DBs

* Specialized vector DBs

Milvus: A Purpose-Built Vector Data Management System

Jianguo Wang®, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang,
Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan, Yinghao Zou, Jiquan Long,

Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, Charles Xie
* Zilliz & Purdue University Zilliz
* csjgwang @{zilliz.com; purdue.edu/ {firstname.lastname}@zilliz.com

SIGMOD 2021

https://www.cs.purdue.edu/homes/csjgwang/pubs/SIGMOD21_Milvus.pdf

Motivation

* The motivation in 2021 was different from today
. o Explosive growth of unstructured data

. G Vector embedding is everywhere (e.g., item2vec, word2vec, doc2vec,
graph2vec)

* Research question
* How to efficiently manage large-scale vector data?

Requirements

* Efficiency
* Large-scale vector data
* Dynamic vector data management

* Advanced query semantics
* Vector similarity search
* Attribute filtering (filtered vector search)
* Multi-vector search

Systems overview

Memory

Persistent
Storage

Applications

Query Processing

l Vector search Attribute filtering Multi-vector query
Request Handler >
Cache- & SIMD-aware Heterogenous Acceleration
Data insert Query
v 1
MemTable Buffer pool Indexing
: IVF_P
: | Collection A "’-‘ | Collection B "’-‘ IVF_FLAT -PQ
MemTable h L HNSW

Flush i-

Loadﬂk Original data -T Index l

Small
Segments

Small
Segments

Data Compaction

}

|

Large Segments

Multi-storage (S3/HDFS/...)

Vectors Attributes

Indexes

g

Snapshot Management

Cache-aware design: nailve solution

thread T,

thread T,

thread T,

heaps

query vectors

data vectors

v

do

a4

\ 4

Qi1

Q4o

qt+‘|

Om

* m queries, n vectors, t threads,
find for each vector its top-k

* Basic operationin scanning a
bucket
* Naive solution

* Assign one query to a thread every
time

« Compare query vector with all data
vectors

* Limitations
* High cache miss rate
* Limited parallelwhen m is small

Cache-aware design in Milvus
Memory L3 Cache L3 Cache

data vectors query vectors heaps

Divide both data vectors and query
vectors into blocks

M e e (N —— »_Hoo P tor block

v ;|:T H * Process one query vector block per
thread T, | Sy N (N sy 0.1 e

Vb-1 ST Qe e » Ho,s-1 o .
A RN Similar to block nested loop join

Hio * Query block: inner loop

* Data block: outer loop

»
.| I
" | —
ek

thread T, | Vo s+1

Vb1 Q2s-1

* Assign data vector blocks to threads
(usually n>m)

»
I
-
L7,]
]
-

R — ﬁj.;‘:' "R “\"‘ \1\\:\\‘ EEE ° One heap per thread per query

Vv 4y f q 4y R H_ .
- w)'s Y S P vector (avoid lock
thread T, [V1rb+ A(w-1)s+1 w1 Fe ()

Vi1 qys-1 { Hgq ,S-1

—o-original —< cache—aware

52 90 000 —

_§1 50 1(1)8 L A D

1§100‘ Oj"_%"“

g 50- 0‘01503104105106107 <
0 10" 100 10° 107

data size

(a) 12MB L3 cache

350 100 +

2307 o1

220{ o001~

S 17070 [S —
S 10 - 10° 10* 10° 10° 10
S

—o- original

—— cache—aware

D

(b) 35.75MB L3 cache

0y B8
10° 10 10°

data size

105

107

- AVX2 < AVX512

)
5

W
o

SIMD-aware optimizations

—_ DN
o O

execution time (s

O®3

* Milvus supports SIMD SSE, AVX, AVX2, and AVX512 e .
10° 100 100 10°

e Automatic SIMD-instruction selection data size

* Challenge: how to make it automatically invoke the suitable SIMD instructions on any
CPU processor?

* Faiss: users need to manually specify the SIMD flag during compilation time

* Milvus factors out the common functions (e.g., similarity computing) that rely on SIMD
accelerations

* Also, for each function, it implements four versions (i.e., SSE, AVX, AVX2, AVX512) and

puts each one into a separated source file, which is further compiled individually with
the corresponding SIMD flag

10

CPU and GPU co-design for vector search

* Limitations in the GPU design in Faiss

* The PCle bandwidth is not fully utilized, e.g., our experiments show that

the measured I/0O bandwidth is only 1~2GB/s while PCle 3.0 supports up
to 15.75GB/s

* [tis not always beneficial to execute queries on GPU (than CPU)
considering the data transfer

CPU and GPU co-design for vector search

* Addressing limitation 1

 Copy multiple buckets from CPU to GPU every time (while Faiss copies
buckets one by one)

* Addressing limitation 2

* Observation: GPU outperforms CPU if the query batch size is large
enough considering the expensive data movement

CPU and GPU co-design for vector search

* CPU-GPU co-design

Algorithm 1: SQ8H

[y

[\~

let ng be the batch size;

if ng > threshold then
run all the queries entirely in GPU (load multiple buckets
| to GPU memory on the fly);

else
execute the step 1 of SQ8 in GPU: finding n,,,,p. buckets;

25

N 4
20 o o |

§ &

=15

N ¢

210 -

S

S 5

3.

execute the step 2 of SQ8 in CPU: scanning every relevant
| bucket;

pure CPU —©— pure GPU —< SQ8H

0 100 200 300 400 500
query batch size

Higher ratio of
computation-to-1/0

Multi-vector search

* |In some applications, each entity has multiple vectors

* E.g., each person is described using multiple vectors to describe the front
face, side face, and posture

* Another source of multi-vector is
using multiple embedding models
to represent the same object

https://butterflymx.com/blog/multi-camera-security-system/

https://butterflymx.com/blog/multi-camera-security-system/

Multi-vector search

* Problem

* Both data entries v and queries g contain m vectors. Given a vector
similarity function fand a score aggregation function g, find k entries with
highest score value:

g(f(v1; ql): f(vz» CIZ)I ...,f(v 'qu))

* E.g., gcan be weighted sum

Multi-vector search

* Vector fusion
 Merge the multiple subvectors into a single vector v = |e.vg, e.V1, ..., €.V —1]
* Perform regular vector search

* However, it requires the similarity function is decomposable, e.g., dot
product

9 (f(vlr ql)r f(VZI qZ)r --'rf(vur q,u))
=f (h(vl, ...,vﬂ), h'(ql, ...,qu))

f: inner product h: concatenation,
g: weighted sum h’: weighted concatenation

[wo X q.vo, W1 X q.V1, ..., Wy—1 X q.V;—1]

Multi-vector search

* Use Fagin’s algorithm

* But it relies on getNext(), which is
inefficient on vector index

* Milvus develops an iterative merging
algorithm that bypasses getNext()

https://www.sciencedirect.com/science/article/pii/S0022000003000266

Ry
X, | 1
0.8
X; |0.5
X, |0.3
Xs | 0.1

R,
0.8
X; | 0.7
X, |0.3
X, |0.2
Xs | 0.1

R3
X, |0.8
X; | 0.6
X, |0.2
Xs | 0.1
0

https://www.sciencedirect.com/science/article/pii/S0022000003000266

Multi-vector search

* Search top-k’ result for each g.subvector
* Try to find results with Fagin's algorithm (NRA)

e |f k results can be determined
e Return results

* Otherwise
* Increase k’ and repeat

Credits

* Jlanguo Wang, Purdue

* Silu Huang, ByteDance

	Slide 1: CS4221 Modern Databases II. Vector Databases
	Slide 2: Recent vector databases
	Slide 3: Motivation 1: vector embedding
	Slide 4: Motivation 2: large language models
	Slide 5: Key operator in vector DBs: vector similarity search
	Slide 6: Evolution of vector data(base)
	Slide 7: Why are vector DBs challenging?
	Slide 8: P1: Curse of dimensionality
	Slide 9: P1: Curse of dimensionality
	Slide 10: P2: Approximation
	Slide 11: P2: Approximation
	Slide 12: P3: Advanced query processing
	Slide 13: Outline
	Slide 14: Vector indexes (main memory)
	Slide 15: Quantization
	Slide 16: Quantization
	Slide 17: IVF_FLAT
	Slide 18: IVF_FLAT
	Slide 19: Compression
	Slide 20: Compression: basic idea
	Slide 21: Compression: product quantization (PQ)
	Slide 22: Compression: product quantization (PQ)
	Slide 23: Compression: product quantization (PQ)
	Slide 24: Compression: product quantization (PQ)
	Slide 25: Compression: product quantization (PQ)
	Slide 26: Compression: product quantization (PQ)
	Slide 27: IVF_PQ
	Slide 28: Graph-based vector index
	Slide 29: Graph-based vector index
	Slide 30: Graph-based vector index
	Slide 31
	Slide 32: Graph-based vector index
	Slide 33: Graph-based vector index
	Slide 34: Outline
	Slide 35: Overview of disk-based vector indexes
	Slide 36
	Slide 37: Key ideas
	Slide 38: Key ideas
	Slide 39: Optimizations in SPANN
	Slide 40: Optimizations in SPANN
	Slide 41: Optimizations in SPANN
	Slide 42: Optimizations in SPANN
	Slide 43: Optimizations in SPANN
	Slide 44
	Slide 45: Key ideas
	Slide 46
	Slide 47: Outline
	Slide 48: Vector databases: specialized vs. generalized
	Slide 49: Vector search in PostgreSQL
	Slide 50: Vector search in PostgreSQL
	Slide 51: PASE
	Slide 52: Challenges in PASE
	Slide 53: PASE architecture
	Slide 54: SQL layer of PASE
	Slide 55: Index layer of PASE
	Slide 56: Index Layer of PASE
	Slide 57: Storage layer of PASE
	Slide 58
	Slide 59: Timescale-vector
	Slide 60: Outline
	Slide 61
	Slide 62: Motivation
	Slide 63: Requirements
	Slide 64: Systems overview
	Slide 65: Cache-aware design: naïve solution
	Slide 66: Cache-aware design in Milvus
	Slide 67
	Slide 68: SIMD-aware optimizations
	Slide 69: CPU and GPU co-design for vector search
	Slide 70: CPU and GPU co-design for vector search
	Slide 71: CPU and GPU co-design for vector search
	Slide 72: Multi-vector search
	Slide 73: Multi-vector search
	Slide 74: Multi-vector search
	Slide 75: Multi-vector search
	Slide 76: Multi-vector search
	Slide 77: Credits

