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Recent vector databases



Motivation 1: vector embedding
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Unstructured Data Vectors Analytics in 
Vector Space

Known as “vector embedding” (due to deep learning)



Motivation 2: large language models
• Vector DBs & RAGs address many critical limitations of LLMs

• Hallucination: incorrect or fabricated answer
• Lacking domain-specific knowledge
• Up-to-date information

https://zilliz.com/use-cases/llm-retrieval-augmented-generation 

Vector DB RAG (Retrieval-Augmented
Generation)

https://zilliz.com/use-cases/llm-retrieval-augmented-generation


...

Top-k similar vectors

Key operator in vector DBs: vector similarity search

Billions of vectors

query (e.g., image)



Evolution of vector data(base)
1999

(Content-based 
information retrieval)

2013
(Embedding)

2023
(LLM)

Locality-sensitive hash



Why are vector DBs challenging?

• Easy to get started, but very challenging to achieve high performance, accuracy, 
and efficiency

• Three unique properties that contribute to the challenges of vector DBs
• Property P1: Curse of Dimensionality
• Property P2: Approximation
• Property P3: Advanced Vector Data Analytics



P1: Curse of dimensionality

All techniques fail on high-d space (for exact answers) 
➔ approximate answer!

All vector DBs return approximate answer

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a 

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a


P1: Curse of dimensionality

Querying in high-dimensional space
➔ no locality ➔ hard to leverage tiered storage

Almost all vector DBs only use DRAM ➔ too expensive (in the cloud)

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a 

https://medium.com/@soumiksanku08/curse-of-dimensionality-293d0d16fe2a


P2: Approximation

• Approximation introduces a new design tradeoff (in addition to 
performance and cost)
• Complicates system design
• Different from traditional databases
• Approximate query processing is still not the mainstream

• Many vector indexes are developed with different tradeoffs
• How to make the right tradeoff between CAP?

• Existing databases rely on users’ manual selection



P2: Approximation

• Need to consider approximation from the ground-up
• Index type selection
• Index parameter tuning
• Caching

• If there’s a cache miss, do you want to return current results or go to disk to 
compute accurate answer?

• Compression
• Consistency
• Visibility
• …



P3: Advanced query processing

• Query is more than pure vector search
• Can contain filters (attribute filters / range filters), and other non-vector data 

(e.g., relational / document / graph / spatial data)
• Necessary to support advanced RAGs

Finding the T-shirts similar to a 
given image vector that also cost 
less than $100 and have text 
descriptions containing specific 
keywords



Outline

• Introduction
• Main-memory vector index
• Disk-based vector index
• Generalized vector DBs
• Specialized vector DBs



Vector indexes (main memory)

• Quantization-based indexes
• E.g., IVF_FLAT, IVF_PQ

• Graph-based indexes
• E.g., NSW, HNSW

• Tree-based indexes
• Hash-based indexes

Widely used in 
vector DBs



Quantization

• What’s quantization?
• A way of approximation

• Let’s look at quantization in 1-dimensional space
• 𝑄 𝑥 =

𝑥

10
, where x is an input value

• input = 3, 𝑄 3 =
3

10
= 0.3 = 0

• input = 3, 𝑄 91 =
91

10
= 9.1 = 9

• Those 99 integers can be quantized into a smaller set of 10 
buckets



Quantization

• What’s quantization in high-dimensional space?
• It’s basically clustering, e.g., k-means



IVF_FLAT

• Index phase
• Cluster n vectors into K clusters (quantization)
• Centroids: c0…cK-1

• Search phase
• Given a query q, find the closest u clusters

based on centroids
• u: user-defined parameter

• Only scan the vectors in the u clusters



IVF_FLAT

• Question: how to quickly compute the similarity between q and a vector vi in 
a cluster?

• Naïve approach
• A for-loop to compute dist(q,vi)
• d steps (where d is dimensionality, e.g., d = 1000)

• Better solutions?
• Remember, we know the centroid c
• We can pre-compute the distance of dist(c,vi)

• Then dist(q,vi) = dist(q,c) + dist(c,vi)  (approx.)
• Only need 1 step to compute distance for all vi

q

v1

v2

vi

…

…

q

c vi



Compression

• How to reduce the space overhead of IVF_FLAT?
• Compression

• Example
• Youtube-8M data includes 1.4 billion vectors
• Each vector takes 1024 dimensions (each float takes 32 bits)
• 5.6TB space (memory!)

https://dl.acm.org/doi/10.14778/3424573.3424580 

https://dl.acm.org/doi/10.14778/3424573.3424580


Compression: basic idea

• Instead of using 32 bits to represent a float 
number

• Use L bits (e.g., L = 8)
• Think of 1-d quantization
• Every float number in a vector is quantized 

into [0…2L-1]
• The 1.4billion vectors will take 1.4TB space 

(if L = 8)

vector

Every float number is 
mapped to [0…255]
(8 bits per number)



Compression: product quantization (PQ)

• How to further reduce the space 
overhead?

• Product quantization (PQ)
• Key idea: compress between multiple 

dimensions
• Every vector is partitioned into M 

subvectors, e.g., M = 8
• Every subvector is compressed using L 

bits (e.g., L = 8)

...



Compression: product quantization (PQ)

• How to compress subvectors?
• Each vector vi is partitioned into M subvectors 𝑣𝑖

0…𝑣𝑖
𝑀−1

• M subspace

• All the vectors in the same subspace are compressed together 
using high-dimensional quantization (clustering)
• All 𝑣0

0, 𝑣1
0, 𝑣2

0…, 𝑣𝑛−1
0  are compressed together

• All 𝑣01, 𝑣11, 𝑣21…, 𝑣𝑛−11  are compressed together
• Every subvector is represented using the centroid ID



Compression: product quantization (PQ)

Every vector is split into 2 parts: head and tail vector
All the head vectors will be compressed together

All the tail vectors will be compressed together

K-means clustering
(every subvector is 
encoded using the 

centroid ID)

K-means clustering
(every subvector is 
encoded using the 

centroid ID)
...



Compression: product quantization (PQ)

https://dl.acm.org/doi/10.14778/3424573.3424580 

Original vector is compressed as <5.00, 6.19, 9.10, 7.29>

https://dl.acm.org/doi/10.14778/3424573.3424580


Compression: product quantization (PQ)

• Each vector is compressed using M*L bits
• E.g., M = 8, L = 8

• Regardless of the dimensionality
• But the parameters can be tuned based on dimensionality

• Example: Consider the 1.4 billion vectors again
• Each vector will take 8*8 bits (M = 8, L = 8), i.e., 8 bytes
• The 1.4billion vectors will take 11.2GB space



Compression: product quantization (PQ)

• What’s the tradeoff? Space vs. accuracy

• Another benefit of PQ: Fast distance computation
• All the distance in subspace can be precomputed
• Example:

• Vector X → PQ code (3, 1)
• Vector Y → PQ code (1, 5)
• Dist(X,Y) = dist(3,1) + dist(1,5), where each part can be precomputed



IVF_PQ

• Similar as IVF_FLAT
• Difference is that 

• Each cluster applies PQ
• using residual vectors 

• Search process is the same



Graph-based vector index

• Key ideas
• For each vector, pre-compute the nearest neighbors
• Connect them using a graph
• Convert vector search problem to graph traversal problem



Graph-based vector index

• Navigable Small Worlds (NSW)
• Add new vertices to the index
• For each new vertex (vector), find the closest m neighbors seen so far and 

connect with them
• Balance: index construction time & query performance

A

B

C

D

E

F

G

m = 2



A

B

C

D

E

F

G

Q

Entry point

Query point

Can be extended to kNN by maintaining a result set and a candidate set

Terminate if the max distance in the result set < min distance in the candidate set

Graph-based vector index



https://ieeexplore.ieee.org/abstract/document/9101583 

K = 3Query

Candidate set
Result set

https://ieeexplore.ieee.org/abstract/document/9101583


Graph-based vector index

• Hierarchical Navigable Small Worlds (HNSW)
• Skip list + NSW
• Multi-layered NSW
• Address the “bad” entry point issue

• If the entry point is not selected
properly, the search path is long

https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf 

https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf


Graph-based vector index

• Every layer is an NSW on the sampled 
vertices

• Find the nearest vector in each layer, 
which will serve as the entry point for 
the next layer

• What if I choose a bad entry point from 
the top layer?
• Slow, but acceptable
• As the num of points is small in top layer

Entry point

Layer 0

Layer 1

Layer 2

Layer 3

Entry point for layer 0
(much closer to query than a

randomly selected one)



Outline

• Introduction
• Main-memory vector index
• Disk-based vector index
• Generalized vector DBs
• Specialized vector DBs



Overview of disk-based vector indexes

• Motivation: existing memory-based vector indexes consume too much 
memory (can be TBs of memory) to achieve high performance and recall

• Goal: reducing memory overhead while maintaining high performance and 
recall

• DiskANN (NeurIPS 2019): graph-based
• SPANN (NeurIPS 2021): quantization-based
• Starling (SIGMOD’24): graph-based



NeurIPS 2021

https://www.microsoft.com/en-us/research/uploads/prod/2021/11/SPANN_finalversion1.pdf


Key ideas

• Based on quantization
• Clustering the vectors into buckets (aka posting lists)

• But the buckets are overlapped a bit (for optimizations)

• Centroids are stored in memory (organized by SPTAG index)
• SPTAG: A tree-based index structure

• Posting lists are stored on disk



Key ideas

• Memory layer: SPTAG (for centroids)
• Disk layer: posting lists
• Search process

• Search m nearest centroids
from in-memory SPTAG

• Load those m posting lists
from disk



Optimizations in SPANN

• How to reduce disk access?
• Some posting lists can be very long

• Solution
• Partition the entire vectors into a large number of posting lists (so that 

each list is not very long)
• Use multi-constraint balanced clustering to make sure some posting lists 

are not too long



Optimizations in SPANN

• How to improve recall?
• Quantization-based indexes are difficult to achieve high recall

• Solution
• Replicate boundary vectors into multiple posting lists
• Overlapped clustering
• How?

Green vectors are duplicated in
two nearby clusters



Optimizations in SPANN

• Assign a vector to multiple closest clusters instead of only the 
closest one if the distance between the vector and these clusters 
are nearly the same

Nearest one



Optimizations in SPANN

• How many posting lists to load for a given query?
• Different queries may need different number

• Solution: query-aware dynamic pruning
• Observation: Some queries only need to search several posting lists to 

find true neighbors, while some search a lot

80% of queries only need to
search 6 posting lists



Optimizations in SPANN

• Query-aware dynamic pruning
• Instead of searching closest m posting lists for all queries, dynamically 

decide a posting list to be searched only if the distance between its 
centroid and query is almost the same as the distance between query and 
the closest centroid

Nearest one



NeurIPS 2019

https://suhasjs.github.io/files/diskann_neurips19.pdf


Key ideas

• Graph-based index
• Disk layer: Graph structure

• Graph structure is similar to HNSW (called Vamana)
• With full-precision vectors
• Structure: vector itself followed by adjacent vector IDs

• Memory layer: Compressed vectors
• PQ-compressed vectors





Outline
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• Specialized vector DBs



Vector databases: specialized vs. generalized

• Specialized vector databases
• Explicitly designed for vector data

• Generalized vector databases
• Support vector search within relational databases
• One-size-fits-all



Vector search in PostgreSQL

PgVector 
v0.1.0
IVFFlat

PgEmbedding
v0.3.0
HNSW

PgVector
V0.5.0
HNSW

Timescale Vector

DiskANN

2021.04 2023.07.31

…

2023.08.28 2023.09.252022.08

PASE 
IVFFlat
HNSW SPANN, HNSW, 

IVF

VBase

2023.11



Vector search in PostgreSQL

SIGMOD’20

pgvector is similar to PASE

https://dl.acm.org/doi/abs/10.1145/3318464.3386131


PASE
• Key ideas

• Store vectors in a separated column
• Build high-d indexes on that vector column
• Similar to B-trees on other columns
• Intuitively, should have very high performance

ID (Int Type) Vector (Array Type)

0 [0.1, 0.5, 0.6, 0.3]

1 [0.3, 0.2, 0.9, 0.1]

2 [0.5, 0.5, 0.3, 0.4]

3 [0.9, 0.1, 0.3, 0.2]

4 [0.6, 0.4, 0.3, 0.8]



Challenges in PASE

• How to make the newly-built high-d index recognizable by the SQL 
query optimizer?

• How to configure the internal parameters of high-d indexes?
• How to define and specify similarity functions?
• How to represent vector search using SQL?



PASE architecture



SQL layer of PASE

• Extend SQL syntax for vector search

<op> is a special operator to compute the similarity between two vectors.



Index layer of PASE

Sampling ratio: 10/1000
256: # of clusters in IVF_FLAT



Index Layer of PASE

• To be recognizable by SQL optimizer:
• Implement certain index interfaces, e.g., build(), insert(), delete(), scan(), 

via PG’s IndexAmRoutine()
• The index needs to follow PG’s index page structure in order to be 

accessed via the buffer manager and storage engine

• These restrictions can affect performance



Storage layer of PASE

• Store vector data same as other attributes in a table
• Tables and indexes are stored on disk, but frequently accessed 

pages are cached in memory via the buffer manager



How We Made PostgreSQL a Better Vector Database (timescale.com)

https://www.timescale.com/blog/how-we-made-postgresql-the-best-vector-database/?utm_campaign=vectorlaunch&utm_source=timescale-ai&utm_medium=direct&utm_content=timescale-ai


Timescale-vector

➔ Inspired by DiskANN[1] (Optimized for disk)
◆ On-disk data layout

● Cluster each node vector with its neighboring links

◆ Single layer graph can further augment the cache’s efficiency
● Unlike HNSW’s hierarchical structure

Vector (1536 dimension) Neighbors (64 degree)

1536 * 4 = 6KB 64 * 4 = 256 Bytes

[1]Jayaram Subramanya, Suhas, et al. "Diskann: 
Fast accurate billion-point nearest neighbor 
search on a single node." Advances in Neural 
Information Processing Systems 32 (2019).
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SIGMOD 2021

https://www.cs.purdue.edu/homes/csjgwang/pubs/SIGMOD21_Milvus.pdf


Motivation

• The motivation in 2021 was different from today
• ❶ Explosive growth of unstructured data
• ❷ Vector embedding is everywhere (e.g., item2vec, word2vec, doc2vec, 

graph2vec)

• Research question
• How to efficiently manage large-scale vector data?  



Requirements

• Efficiency
• Large-scale vector data
• Dynamic vector data management

• Advanced query semantics
• Vector similarity search
• Attribute filtering (filtered vector search)
• Multi-vector search



Applications

MemTable

MemTable

Query Processing

IndexingBuffer pool
Memory

Persistent
Storage

Small
Segments

Small
Segments

Large Segments

Multi-storage (S3/HDFS/…) Snapshot Management

…

…

Data insert

Attributes

… …

Indexes

Collection A Collection B …

Flush

Data Compaction

Load Original data Index

Vector search Attribute filtering Multi-vector query

Cache- & SIMD-aware Heterogenous Acceleration
Request Handler

IVF_FLAT IVF_PQ

HNSW …

Vectors

Query

Systems overview



Cache-aware design: naïve solution

• m queries, n vectors, t threads, 
find for each vector its top-k
• Basic operation in scanning a 

bucket

• Naïve solution
• Assign one query to a thread every 

time
• Compare query vector with all data 

vectors

• Limitations
• High cache miss rate
• Limited parallel when m is small

thread T0

thread T1

…

thread Tt-1

heaps

H0

H1

Ht-1

query vectors

q0

q1

qt-1

data vectors

… … …

v0

v1

v2

v3

v4

vn…

qt+0

qt+1

qm

…



Cache-aware design in Milvus

• Divide both data vectors and query 
vectors into blocks

• Process one query vector block per 
time

• Similar to block nested loop join
• Query block: inner loop
• Data block: outer loop

• Assign data vector blocks to threads 
(usually n > m)

• One heap per thread per query 
vector (avoid lock)

Memory L3 Cache L3 Cache





SIMD-aware optimizations

• Milvus supports SIMD SSE, AVX, AVX2, and AVX512
• Automatic SIMD-instruction selection

• Challenge: how to make it automatically invoke the suitable SIMD instructions on any 
CPU processor?

• Faiss: users need to manually specify the SIMD flag during compilation time
• Milvus factors out the common functions (e.g., similarity computing) that rely on SIMD 

accelerations
• Also, for each function, it implements four versions (i.e., SSE, AVX, AVX2, AVX512) and 

puts each one into a separated source file, which is further compiled individually with 
the corresponding SIMD flag



CPU and GPU co-design for vector search

• Limitations in the GPU design in Faiss
• The PCIe bandwidth is not fully utilized, e.g., our experiments show that 

the measured I/O bandwidth is only 1∼2GB/s while PCIe 3.0 supports up 
to 15.75GB/s

• It is not always beneficial to execute queries on GPU (than CPU) 
considering the data transfer



CPU and GPU co-design for vector search

• Addressing limitation 1
• Copy multiple buckets from CPU to GPU every time (while Faiss copies 

buckets one by one)

• Addressing limitation 2
• Observation: GPU outperforms CPU if the query batch size is large 

enough considering the expensive data movement



CPU and GPU co-design for vector search

• CPU-GPU co-design

Higher ratio of
computation-to-I/O 



Multi-vector search

• In some applications, each entity has multiple vectors
• E.g., each person is described using multiple vectors to describe the front 

face, side face, and posture

• Another source of multi-vector is 
using multiple embedding models
to represent the same object

https://butterflymx.com/blog/multi-camera-security-system/ 

https://butterflymx.com/blog/multi-camera-security-system/


Multi-vector search

• Problem
• Both data entries v and queries q contain m vectors. Given a vector 

similarity function f and a score aggregation function g, find k entries with 
highest score value:

• E.g., g can be weighted sum

𝑔(𝑓 𝑣1, 𝑞1 , 𝑓 𝑣2, 𝑞2 , … , 𝑓(𝑣𝜇, 𝑞𝜇))



Multi-vector search

• Vector fusion
• Merge the multiple subvectors into a single vector
• Perform regular vector search
• However, it requires the similarity function is decomposable, e.g., dot 

product

𝑔 𝑓 𝑣1, 𝑞1 , 𝑓 𝑣2, 𝑞2 , … , 𝑓 𝑣𝜇 , 𝑞𝜇

= 𝑓 ℎ 𝑣1, … , 𝑣𝜇 , ℎ′ 𝑞1, … , 𝑞𝜇

f: inner product
g: weighted sum

h: concatenation,
h’: weighted concatenation



Multi-vector search

• Use Fagin’s algorithm
• But it relies on getNext(), which is 

inefficient on vector index
• Milvus develops an iterative merging 

algorithm that bypasses getNext()

https://www.sciencedirect.com/science/article/pii/S0022000003000266 

https://www.sciencedirect.com/science/article/pii/S0022000003000266


Multi-vector search

• Search top-k’ result for each q.subvector
• Try to find results with Fagin's algorithm (NRA)
• If k results can be determined

• Return results

• Otherwise
• Increase k’ and repeat



Credits

• Jianguo Wang, Purdue

• Silu Huang, ByteDance
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