
CS4221
Cloud Databases I. Fundamentals

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

Cloud databases: outline

• Cloud Computing & Cloud Services

• Storage and Compute Disaggregation

• Cloud Data Warehouses

• Storage Models

The booming cloud database market

Worldwide Database Revenue Forecast (IDC)

150

120

90

60

30

0

$
B

ill
io

n

2021 2022 2023

On Premise

2024 2025 2026

Cloud

Why are cloud databases different?

Traditional Cloud-Native

$$$

$$$

$

Elasticity

pay-as-you-go

Traditional vs. cloud databases

Cloud computing

• Delivery of computing as a service over the network

- Backed by a large distributed computing infrastructure

• Cloud computing as utility
-
-

Pay as you go
Cloud providers provision resources rapidly

Types of clouds

• Public Cloud

- Owned by a cloud provider, made
available to public via internet

• Private Cloud

- Owned and accessed only by
organization

In
tr

a
n

e
t

Internet

Types of clouds

In
te

rn
e

t

In
tr

a
n

e
t

• Hybrid Cloud

- Private cloud + elastic public cloud
(to handle burst of requests)

• Public Cloud

- Owned by a cloud provider, made
available to public via internet

• Private Cloud

- Owned and accessed only by
organization

Cloud building blocks

Applications

Development Platform

Resource Sharing

Infrastructure Physical Servers

E.g., Email, Google Drive

E.g., Google App Engine, AWS Lambda

Virtualizing Resources

Cloud computing services

• Infrastructure as a Service (IaaS)

-
-
-
-

Leasing (virtualized) infrastructure remotely
Configurable CPU, memory, disk, and network
bandwidth Resource sharing, sandboxing
Most flexibility in software development

Amazon

EC2

• Platform as a Service (PaaS)
-
-
-

T o facilitate creation of cloud software
Abstract away the management of underlying
infrastructure Built-in scaling

AWS Lambda

Amazon

S3

Cloud computing services

• Software as a Service (SaaS)

-
-
-
-
-

Software and data are hosted on the cloud
Often accessed by using a web browser or an mobile app
Multitenant
Provider handles software updates and patches

Limitations
-
-
-

V endor lock-in
Hard to customize
Data security

AWS services

SaaS

PaaS

DBaaS

IaaS

S3

Storage: Compute:

Database:

EBS EC2 Lambda

Big Data:

Athena

RDS

Aurora

AWS Simple Storage Service (S3)

• Object Storage

- Just want to store some bytes

-
-
-
-

Each object is associated with a key (unique with a bucket)
PUT(key, value): create/replace a whole object
GET(Key, <range>): read a byte range in the object
LIST(<startKey>): list keys in the bucket in order (return 1000 per call)

• Key-Value API
S3

• Eventual Consistency

- But guarantees read-your-own-writes

AWS Simple Storage Service (S3)

S3

Simple key-value HTTP(S) interface

Unbeatable availability and durability

Super cheap

Aggregated bandwidth scales well

No in-place update, object must be written in full

But can read part of an object

Performance could vary

High access latency (10s - 100s ms)

• Ideal Use Case
-
-
-

Large data v olume
Data mostly immutable
Latency-insensitive app

AWS Elastic Compute Cloud (EC2)

• Rent virtual machine instances

EC2• A wide range of instance types
-
-

Overall “size”
Different optimization emphasis: CPU, memory, storage, GPU, …

• Pricing
-
-
-

On-demand: pay-as-you-go
Reserved instance
Spot instance

AWS Lambda

• Serverless Computing
“… is a cloud computing execution model in which the cloud provider runs
the server, and dynamically manages the allocation of machine resources”

— Wikipedia
Lambda

-
-
-

Cloud providers execute code for developers

A.k.a. Function as a Service (FaaS)

Developers do not need to worry about:

-
-
-

Instance configuration, management, …

Resource provisioning & Scaling

Fault-tolerance

- No persistent states

AWS Lambda

Upload Code

AWS Lambda

Upload Code

Reserve Pool

EC2

AWS Lambda

Reserve Pool

Upload Code

Latency < 1s

EC2

Reserve Pool

Latency < 1s

Charged in 100ms granularity

Upload Code

AWS Lambda

EC2

Reserve Pool

Latency < 1s

Charged in 100ms granularity

Can support massive

parallelism

Upload Code

AWS Lambda

EC2

Reserve Pool

Can support massive

parallelism

Limitations

-

-

-

Limited execution time (15min)

Limited resource

No direct communication

Upload Code

AWS Lambda

EC2

Latency < 1s

Charged in 100ms granularity

Cloud databases: outline

• Cloud Computing & Cloud Services

• Storage and Compute Disaggregation

• Cloud Data Warehouses

• Storage Models

Shared-nothing architecture

Interconnection

Shared-nothing architecture

Interconnection

PROS
-
-

Horizontal Scalability

Simple and elegant design

CONS
-
-

Cross-machine operations

Data redistribution at cluster resizing

Interconnection

Separating compute and storage nodes

Storage Area Network

Interconnection

Storage Area Network

Stateless
Used as cache

Separating compute and storage nodes

Key Benefit:
Compute and storage can
scale independently

Performance depends on
network latency and bandwidth

Interconnection

Storage Area Network

Separating compute and storage nodes

Interconnection

Storage Area Network

Memory Disaggregation ?

Key Benefit:
Compute and storage can
scale independently

Performance depends on
network latency and bandwidth

Separating compute and storage nodes

Cloud databases: outline

• Cloud Computing & Cloud Services

• Storage and Compute Disaggregation

• Cloud Data Warehouses

• Storage Models

Database workloads

• Online Transaction Processing (OLTP)
• Transactions that read/update a small amount of data each time.
• Each transaction finishes in a short time (e.g., 1 or 0.1 milliseconds)

• Online Analytical Processing (OLAP)
• Complex queries that read a lot of data to compute joins/aggregates.

• A query can take up to hours or days.
• Data is typically either unchanged or insert-only.

• A query typically does not take locks. The DBMS uses a special way to maintain
consistency if there are inserts.

• Hybrid Transaction + Analytical Processing
• OLTP + OLAP together on the same database instance

Database workloads

OLTP

OLAP

Write-Heavy Read-Heavy

Simple

Complex

Workload Focus

Q
ue

ry
 C

om
pl

ex
it

y

HTAP

Online Transaction Processing (OLTP)

Example: online shopping, stock market transactions, …

SELECT *
FROM ShoppingCart

WHERE customerID = …

INSERT INTO Orders

VALUES (…)

UPDATE Accounts

SET balance = …

WHERE customerID = …

Online Transaction Processing (OLTP)

Example: online shopping, stock market transactions, …

-
-
-
-
-
-

Simple, short-lived transactions (ms)

Only touch a small amount of data

Insert- and update-heavy

Few table joins
Skewed access towards recent data

Queries often predefined

SELECT *
FROM ShoppingCart

WHERE customerID = …

INSERT INTO Orders

VALUES (…)

UPDATE Accounts

SET balance = …

WHERE customerID = …

Large number of concurrent operations

Online Analytical Processing (OLAP)

Example: data analytics, business report, …

Online Analytical Processing (OLAP)

Example: data analytics, business report, …

-
-
-
-
-
-

Complex, long-running aggregations

Large table scans

Mostly reads with periodic batch inserts

Often joins multiple tables

Historical data

Queries often ad hoc

Heavy compute on large volume of data

OLAP Schema

• An OLAP database is typically composed of fact tables and dimension tables.
• Fact tables record information about individual events, such as sales, and are

usually very large.
• Example: sales information for a retail store, with one tuple for each item that is sold.

• Dimension tables includes the attributes for describing the data in the fact
table.

• Example: Time and location for each item that is sold

• Fact tables and dimension tables are connected via foreign keys.

Star schema

Snowflake schema

Observation

• The way we store data will significantly impact the performance of processing
queries.

• The relational model does not specify that the DBMS must store all of a
tuple’s attributes together on a single page.

• This may not be the best layout for OLAP workloads…

Row-store

T able is 2D, but storage is 1D array

Row-store

Tuple-by-tuple Storage

T able is 2D, but storage is 1D array

Pros
-
-

Fast tuple insertion/deletion

Fast SELECT *

Cons
-
-

SELECT avg(balance) FROM T GROUP BY age
Reading useless data: wasting I/O

Ideal for OLTP

Column-store

T able is 2D, but storage is 1D array

id name age balance

Column-by-column Storage

Column-store

Pros

-

-

Only scan relevant attributes

Fast and efficient query processing

Cons

-

-

-

INSERT INTO T VALUES (a, b, c, d, …)

SELECT * …

Extra work in tuple splitting and stitching

Ideal for OLAP

T able is 2D, but storage is 1D array

id name age balance

Column-by-column Storage

Column-store is everywhere

• Becomes popular in the late 2000s
- Vertica (C-Store), MonetDB, VectorWise

• Every major data warehouse today
- Teradata, Amazon Redshift, Snowflake, Google BigQuery, ClickHouse,

Greenplum …

• Traditional row-stores intending to support OLAP-type queries
- Oracle 12c, SQL Server, IBM DB2 BLU

Hybrid columnar format

Tables are horizontally portioned into files, where each file is stored in columnar format

Pure Columnar Hybrid Columnar (aka., PAX)

A disk page in the
original proposal

Apache Parquet

27

Footer Length

Footer

Row Group r

Column
Chunk 1

Column

Chunk 2

.

.
Column

Chunk c

Page 1

Page 2

Page p

Page Header

Values

Bloom Filter

Page Index Row Group 1 Metadata
.

Row Group r Metadata Column c Metadata

.

.

.

.

. .

.

.

Column 1 Metadata: offset,

type, encoding, compression,

zone maps...

.

.

Row Group 2

Row Group 1

Metadata: version, schema,
....

Definition Levels

Repetition Levels

Apache ORC

28

Footer Length

Footer

Row Group r

Column

Chunk 1

Column

Chunk 2

Column

Chunk c

Length Stream

Data Stream

Row Group 2

.

Row Group 1

Metadata: version,

number of rows, ...

Row Group 1 Metadata
.

Row Group r Metadata

Index (logical)

Data

Footer

ColChunkStats

.

.

.

.

.

Present Stream

offset,
index length,
data length,
footer length

.

.

.

Col 1 Zone Map

Col 1 Bloom Filter

Col c Zone Map

Col c Bloom Filter

Columnar compression

• Dictionary Encoding

• Run-length Encoding

• Bit-Packing Encoding

• Bitmap Encoding

• Delta Encoding

• Learned encoding

Naïve Compression

Compress data using a general-purpose algorithm. The scope of
compression is only based on the data provided as input.
→ LZO (1996), LZ4 (2011), Snappy (2011), Oracle OZIP (2014), Zstd (2015)

Considerations
→ Computational overhead
→ Compress vs. decompress speed.

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard

Naïve compression

The DBMS must decompress data first before it can be read and
(potentially) modified.

→ Repeated compression and decompression will be the bottleneck.

These schemes also do not consider the high-level meaning or
semantics of the data.

Dictionary encoding

Replace frequent values with smaller fixed-length codes and then maintain a
mapping (dictionary) from the codes to the original values
→ Typically, one code per attribute value.

→ Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast encoding and decoding for both
point and range queries.

Dictionary encoding example

SELECT * FROM users
 WHERE name = 'Andy'

Original Data

name

Andrea

Prashanth

Andy

Matt

Compressed Data

SELECT * FROM users
 WHERE name = 30

Prashanth

code
10

20

30

40

value
Andrea

Prashanth

Andy

Matt

name
10

20

30

40

20

D
ictio

n
ary

Dictionary encoding: order preserving

The encoded values need to support the same collation as the original values.

SELECT * FROM users
 WHERE name LIKE 'And%'

Original Data Compressed Data

SELECT * FROM users
 WHERE name BETWEEN 10 AND 20

name

Andrea

Prashanth

Andy

Matt

Prashanth

code
10

20

30

40

value
Andrea

Andy

Matt

Prashanth

name
10

40

20

30

40

So
rte

d

D
ictio

n
ary

Dictionary: order preserving

SELECT name FROM users
 WHERE name LIKE 'And%'

SELECT DISTINCT name
 FROM users
 WHERE name LIKE 'And%'

Still must perform scan on column

Only need to access dictionary

Original Data Compressed Data

name

Andrea

Prashanth

Andy

Matt

Prashanth

code
10

20

30

40

value
Andrea

Andy

Matt

Prashanth

name
10

40

20

30

40

So
rte

d

D
ictio

n
ary

Run-length encoding

Compress the same continuous values in a single column into triplets:
→ The value of the attribute.

→ The start position in the column segment.

→ The # of elements in the run.

Requires the columns to be sorted intelligently to maximize compression
opportunities.

Run-length encoding

Original Data

id

2

1

4

3

7

6

9

8

isDead

Y

Y

N

Y

N

Y

Y

Y

Compressed Data

id

2

1

4

3

7

6

9

8

isDead

(N,3,1)

(Y,0,3)

(N,5,1)

(Y,4,1)

(Y,6,2)

RLE Triplet
 - Value
 - Offset
 - Length

Run-length encoding

Sorted Data

id

2

1

6

3

9

8

7

4

isDead

Y

Y

Y

Y

Y

Y

N

N

Compressed Data

RLE Triplet
 - Value
 - Offset
 - Length

id

2

1

6

3

9

8

7

4

isDead

(N,7,2)

(Y,0,6)

Bit packing

If the values for an integer attribute is

smaller than the range of its given data

type size, we can reduce the number of

bits to represent each value.

Use bit-shifting tricks to operate on

multiple values in a single word.

Original Data

int32

191

13

92

56

120

81

172

231

00000000 00000000 00000000 10111111

00000000 00000000 00000000 00001101

00000000 00000000 00000000 01011100

00000000 00000000 00000000 00111000

00000000 00000000 00000000 01111000

00000000 00000000 00000000 01010001

00000000 00000000 00000000 10101100

00000000 00000000 00000000 11100111

Original:
8 × 32-bits =
256 bits

Compressed:
8 × 8-bits =
64 bits

10111111

00001101

01011100

00111000

01111000

01010001

10101100

11100111

Patching/mostly encoding

A variation of bit packing when attribute’s values are “mostly” less than
the largest size.
→ The remaining values that cannot be compressed are stored in their raw form.

Original Data Compressed Data
offset

3

value
99999999Original:

8 × 32-bits =
256 bits

Compressed:
(8 × 8-bits) +
16-bits + 32-bits
= 112 bits

int32

191
13

92
99999999

81
120
231
172

mostly8

181
13

XXX
92
81
120
231
172

Invalid

Bitmap encoding

Store a separate bitmap for each unique value for an attribute
→ The ith position in the Bitmap corresponds to the ith tuple in the table.

→ Each bit indicates whether the attribute of the ith tuple is this value.

→ Typically segmented into chunks to avoid allocating large blocks of contiguous memory.

Only practical if the number of distinct values is low.
Some DBMSs provide bitmap indexes.

https://dbdb.io/browse?indexes=bitmap

Bitmap encoding example

Compressed DataOriginal Data
id

2

1

4

3

7

6

9

8

isDead

Y

Y

N

Y

N

Y

Y

Y

id

2

1

4

3

7

6

9

8

Y

1

1

0

1

0

1

1

1

N

0

0

1

0

1

0

0

0

isDead

Original:
9 × 8-bits = 72 bits

9 × 2-bits =
18 bits

2 × 8-bits =
16 bits

Compressed:
16 bits + 18 bits = 34 bits

Bitmap encoding example

Assume we have 10 million tuples.
43,000 zip codes in the US.
→ 10000000 × 32-bits = 40 MB
→ 10000000 × 43000 = 53.75 GB

Every time the application inserts a new
tuple, the DBMS must extend 43,000
different bitmaps.

CREATE TABLE customer (
 id INT PRIMARY KEY,
 name VARCHAR(32),
 email VARCHAR(64),
 address VARCHAR(64),
 zip_code INT
);

Delta encoding

Recording the difference between values that follow each other in the same
column.
→ Store base value in-line or in a separate look-up table.

→ Combine with RLE to get even better compression ratios.

Original Data

time64

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data

time64

(+1,4)
12:00

temp

-0.1
99.5

+0.1
+0.1

-0.2

Compressed Data

time64

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

64-bits + (4 × 16-bits)
= 128 bits

5 × 64-bits
= 320 bits

64-bits + (2 × 16-bits)
= 96 bits

V alue Sequence: v1, v2, v3, . . . , vn

Value sequence compression

What’s the theoretical bound?

- lf i.i.d. random variables: Shannon’s Entropy

- If values are serially correlated: Kolmogorov Complexity

Learned data compression

V alues 100 103 107 106 110 200 210 223 236 245

Learned data compression

100 103 107 106 110 200 210 223 236 245

2.3𝑥 + 98.1 11.6𝑥 + 188

0 0 2 -1 0 0 -1 0 2 -1

V alues

Models

Deltas

V alues

Partitions

Models

Deltas

Compression Ratio %

Ra
nd

om
 A

cc
es

s
m

s

𝑣[0,𝑛) = (𝑣0 , … , 𝑣𝑛−1)

𝑣[𝑘0=0,𝑘1) 𝑣[𝑘1 ,𝑘2) … 𝑣[𝑘𝑚−1 ,𝑘𝑚=𝑛)

𝐹0 𝐹1 𝐹𝑚−1

Δ𝑖 = 𝑣𝑖 − 𝐹𝑗 𝑣𝑖 , for 𝑣𝑖 ∈ 𝑣[𝑘𝑗 ,𝑘𝑗+1)

min ෍

𝑗=0

𝑚−1

(𝐹𝑗 + 𝑘𝑗+1 − 𝑘𝑗 max
𝑖=𝑘𝑗

𝑘𝑗+1−1
log2 𝛿𝑖 ⌉

FOR

Delta

Elias-Fano
LeCo

LeCo-var

Toward next-gen columnar format

• Lesson 1: Dictionary Encoding is the most effective lightweight encoding algorithm for a
columnar storage format because most real-world data have low NDV ratios.

• Lesson 2: It is important to keep the encoding scheme simple in a columnar storage
format to guarantee a competitive scan + decoding performance.

• Lesson 3: A columnar storage format should enable block compression cautiously on
modern hardware because the bottleneck of query processing is shifting from storage
to computation.

• Lesson 4: The metadata layout in a columnar storage format should optimize for fewer
random probes, especially with cloud storage.

• Much better support for ML workloads!

Conclusion

• It is important to choose the right storage model for the target workload:
→ OLTP = Row Store
→ OLAP = Column Store

• OLAP databases rely on columnar compression for high compression speed
and compression ratio.

• Compressed data can be directly used to support some queries without
decompression.

Cloud databases: outline

• Cloud Computing & Cloud Services

• Storage and Compute Disaggregation

• Cloud Data Warehouses

• Storage Models

Data storage

In distributed data analysis, data is typically distributed across nodes.
• Option 1: Data is partitioned and co-located with compute nodes.

• This is the shared-nothing architecture we discussed earlier.
• Queries are typically pushed to the nodes where the data is.

• Option 2: Data is partitioned and stored in a dedicated storage layer.
• This is more modern architecture in the cloud.
• Data is pulled from the storage layer to the compute layer.
• Optimization: retrieving data from the storage layer with basic filtering capability.

• S3 select supports retrieving data from CSV/JSON/Parquet.

Storage models

Choice #1: N-ary Storage Model (NSM)
• This is for OLTP and what we learned before.

Choice #2: Decomposition Storage Model (DSM)
• This is for OLAP

Choice #3: Hybrid Storage Model (PAX)
• This is for HTAP (Hybrid Transactional and Analytical Processing) and OLAP workloads.

N-Ary Storage Model (NSM)

• The DBMS stores (almost) all attributes for a single tuple contiguously on a

single page.

• It is also known as a “row store.”

• Ideal for OLTP workloads where queries are more likely to access a small

number of individual rows and execute write-heavy workloads.

• NSM database page sizes are typically some constant multiple of 4 KB

hardware pages.

• Oracle (4 KB), Postgres (8 KB), MySQL (16 KB)

NSM: Physical Organization

A disk-oriented NSM system stores a tuple’s fixed-
length and variable-length attributes contiguously
in a single-slotted page.

The tuple’s record id (page#, slot#) is how the
DBMS uniquely identifies a physical tuple.

Database Page

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0header

b1 c1
a1header

Slot Array

b2a2 c2header

b3a3 c3header

b4 c4
a4header

b5a5 c5header

NSM: OLTP example

Disk D
at

ab
as

e
Fi

le

SELECT * FROM useracct
 WHERE userName = ?
 AND userPass = ?

Index
INSERT INTO useracct
VALUES (?,?,…?)

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

header

header

header

header userID userName userPass lastLoginhostnameheader

NSM: OLAP example

Disk D
at

ab
as

e
Fi

le

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

header

header

header

header

Useless Data

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

NSM: summary

Advantages
→ Fast inserts, updates, and deletes for single rows.

→ Good for queries that need the entire tuple (OLTP).

→ Can use index-oriented physical storage for clustering.

Disadvantages
→ Not good for scanning large portions of the table and/or a subset of the attributes.

→ Terrible memory locality for OLAP access patterns.

→ Not ideal for compression because of multiple value domains within a single page.

Decomposition Storage Model (DSM)

• The DBMS stores a single attribute of all tuples contiguously in a block of
data.

→ “column store” mentioned earlier.

• Ideal for OLAP workloads where read-only queries perform large scans over a
subset of the table’s attributes.

• DBMS is responsible for combining/splitting a tuple’s attributes when
reading/writing.

DSM: Physical Organization

• Store each attribute and its metadata (e.g.,
nulls) in a separate array.

→ Most systems construct physical tuples using
offsets into these arrays if an array includes fixed-
length data.

→ Need to handle variable-length values…

• Each array is stored as a separate file with a
dedicated header area for metadata about
the entire column.

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header null bitmap
a0 a1 a2 a3 a4 a5

Fi
le

 #
1

header null bitmap
b0 b1 b2 b3 b4 b5

Fi
le

 #
2

header null bitmap

c5
c0 c1 c2 c3 c4

Fi
le

 #
3

DSM: database example

The DBMS stores the values of a single attribute across multiple tuples
contiguously in a page.

Disk D
at

ab
as

e
Fi

le userID

userName

userPass

DSM Disk Page

header

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

header

header

header

header

lastLogin

DSM: database example

Disk D
at

ab
as

e
Fi

le
SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

DSM Disk Page

header

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

DSM Disk Page

header

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

DSM: tuple construction

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.
→ To find the ith tuple, we could find the ith value for each column using the offset.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.

Offsets

0
1
2
3

A B C D

Embedded Ids

A

0
1
2
3

B

1
0
2
3

C

1
1
0
3

D

3
2
1
0

Tradeoffs

• Fixed-length Offsets
• + No metadata is required for constructing tuples.
• + Fast tuple construction.
• - Only works for fixed-length attributes.
• - The positions of the arrays for separate attributes should be the same.

• Embedded Tuple Ids
• + Works for both fixed-length and variable-length attributes.
• + The positions of the arrays for separate attributes could be different.

• This enables more compression opportunities.
• - Additional metadata (i.e., tuple Ids) for constructing tuples.
• - Tuple construction is slower.

DSM: Summary

Advantages
→ Reduces the amount wasted I/O per query because the DBMS only reads the data that it

needs.
→ Faster query processing because of increased locality and cached data reuse.
→ Better data compression (more on this in later slides).

Disadvantages
→ Slow for point queries, inserts, updates, and deletes

Observation on DSM

OLAP queries rarely access a single column in a table by itself.
→ At some point during query execution, the DBMS must get other columns and stitch the

original tuple back together.

But we still want to store data in a columnar format to get the storage +
execution benefits.

So, we need a columnar scheme that stores attributes separately but keeps the
data for each tuple physically close to each other…

PAX storage model

Partition Attributes Across (PAX) is a hybrid storage
model that sits between NSM and DSM.

The goal is to get the benefit of faster processing on
columnar storage while retaining the spatial locality
benefits of row storage.

PAX: physical organization

87

• It horizontally partitions rows into groups and
vertically partitions their attributes into columns.

• Each row group contains its metadata header
about its contents.

• PAX-style formats are widely adopted in big data
processing

• ORC (Optimized Row-Column File)

• Parquet

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

PA
X

 F
ile

a0 a1 a2 b0 b1 b2

c0 c1 c2

header

R
o

w
 G

ro
u

p

a3 a4 a5 b3 b4 b5

c3 c4 c5

header

R
o

w
 G

ro
u

p

Observation on OLAP workloads

• OLAP requires accessing a lot of data, so I/O will be its main bottleneck
during query execution.

• The DBMS can compress pages to reduce the data size and I/O operations.

Push query to data (shared nothing)

Node 1

Application
Server

Node 2

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

R ⨝ S
IDs [101,200] Result: R ⨝ S

Pull data to query (shared storage)

Storage
Node 1

Application
Server

Node 2

Page ABC

Page XYZ

R ⨝ S
IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

Result: R ⨝ S

Let the system select
only the data needed.

Observations

• In many cases, new data arrives periodically and it is common that users are
more interested in more recent data than old data.

• Therefore, it is important to use column-oriented storage (DSM) to
incrementally store and compress a group of rows rather than all rows.

• A more common format is PAX: hybrid row-column storage
• Representative formats: Parquet, ORCFile

OLAP summary

• OLAP is a specialization of relational databases to support analytical processing

and report generation
• Typically done in large “batch” operations on the entire database
• Rule of thumb: pick as “coarse-grained” materialized views or query results as

will allow you to construct all the cross-tabs that may be necessary

Cloud databases: outline

• Cloud Computing & Cloud Services

• Storage and Compute Disaggregation

• Cloud Data Warehouses

• Storage Models

Credits

• Huanchen Zhang, Tsinghua

• Andy Pavlo, CMU

• Dixin Tang, UT Austin

	Slide 1: CS4221 Cloud Databases I. Fundamentals
	Slide 2: Cloud databases: outline
	Slide 3: The booming cloud database market
	Slide 4: Why are cloud databases different?
	Slide 5: Traditional vs. cloud databases
	Slide 6: Cloud computing
	Slide 7: Types of clouds
	Slide 8: Types of clouds
	Slide 9: Cloud building blocks
	Slide 10: Cloud computing services
	Slide 11: Cloud computing services
	Slide 12: AWS services
	Slide 13: AWS Simple Storage Service (S3)
	Slide 14: AWS Simple Storage Service (S3)
	Slide 15: AWS Elastic Compute Cloud (EC2)
	Slide 16: AWS Lambda
	Slide 17: AWS Lambda
	Slide 18: AWS Lambda
	Slide 19: AWS Lambda
	Slide 20: AWS Lambda
	Slide 21: AWS Lambda
	Slide 22: AWS Lambda
	Slide 23: Cloud databases: outline
	Slide 24: Shared-nothing architecture
	Slide 25: Shared-nothing architecture
	Slide 26: Separating compute and storage nodes
	Slide 27: Separating compute and storage nodes
	Slide 28: Separating compute and storage nodes
	Slide 29: Separating compute and storage nodes
	Slide 30: Cloud databases: outline
	Slide 31: Database workloads
	Slide 32: Database workloads
	Slide 33: Online Transaction Processing (OLTP)
	Slide 34: Online Transaction Processing (OLTP)
	Slide 35: Online Analytical Processing (OLAP)
	Slide 36: Online Analytical Processing (OLAP)
	Slide 37: OLAP Schema
	Slide 38: Star schema
	Slide 39: Snowflake schema
	Slide 40: Observation
	Slide 41: Row-store
	Slide 42: Row-store
	Slide 43: Column-store
	Slide 44: Column-store
	Slide 45: Column-store is everywhere
	Slide 46: Hybrid columnar format
	Slide 47: Apache Parquet
	Slide 48: Apache ORC
	Slide 49: Columnar compression
	Slide 50: Naïve Compression
	Slide 51: Naïve compression
	Slide 52: Dictionary encoding
	Slide 53: Dictionary encoding example
	Slide 54: Dictionary encoding: order preserving
	Slide 55: Dictionary: order preserving
	Slide 56: Run-length encoding
	Slide 57: Run-length encoding
	Slide 58: Run-length encoding
	Slide 59: Bit packing
	Slide 60: Patching/mostly encoding
	Slide 61: Bitmap encoding
	Slide 62: Bitmap encoding example
	Slide 63: Bitmap encoding example
	Slide 64: Delta encoding
	Slide 65: Value sequence compression
	Slide 66: Learned data compression
	Slide 67: Learned data compression
	Slide 68: Toward next-gen columnar format
	Slide 69: Conclusion
	Slide 70: Cloud databases: outline
	Slide 71: Data storage
	Slide 72: Storage models
	Slide 73: N-Ary Storage Model (NSM)
	Slide 74: NSM: Physical Organization
	Slide 75: NSM: OLTP example
	Slide 76: NSM: OLAP example
	Slide 77: NSM: summary
	Slide 78: Decomposition Storage Model (DSM)
	Slide 79: DSM: Physical Organization
	Slide 80: DSM: database example
	Slide 81: DSM: database example
	Slide 82: DSM: tuple construction
	Slide 83: Tradeoffs
	Slide 84: DSM: Summary
	Slide 85: Observation on DSM
	Slide 86: PAX storage model
	Slide 87: PAX: physical organization
	Slide 88: Observation on OLAP workloads
	Slide 89: Push query to data (shared nothing)
	Slide 90: Pull data to query (shared storage)
	Slide 91: Observations
	Slide 92: OLAP summary
	Slide 93: Cloud databases: outline
	Slide 94: Credits

