CS4221
Cloud Databases |. Funhdamentals

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

Cloud databases: outline

e Cloud Computing & Cloud Services
e Storage and Compute Disaggregation
e Cloud Data Warehouses

e Storage Models

The booming cloud database market

Worldwide Database Revenue Forecast (IDC)

150

120

O
o

$ Billion
(@))
o

w
o

o

2021 2022 2023 2024 2025 2026

™ On Premise 2 Cloud

Why are cloud databases different?

Traditional

Cloud-Native

0
1
1

|

oo~
Ty
oo

——)

$ pay-as-you-go

(i _oo] o
¢° Elasticity

Traditional vs. cloud databases

Traditional DW Cloud DW
Capital Cost High None
Operational Cost High Low
Elasticity Poor Good
Availability Medium Good
Software Upgrade Slow Fast
Performance Could be Better Medium

Security Medium Medium +

Cloud computing

* Delivery of computing as a service over the network

- Backed by a large distributed computing infrastructure

 Cloud computing as utility
- Payasyou go
Cloud providers provision resources rapidly

Types of clouds

e Public Cloud

- Owned by a cloud provider, made
available to public via internet

) Internet ‘
o e @ FEEEEERRER

e Private Cloud

- Owned and accessed only by

organization

Intranet

Types of clouds

e Public Cloud

- Owned by a cloud provider, made
available to public via internet

e Private Cloud

- Owned and accessed only by

organization

Intranet

 Hybrid Cloud

- Private cloud + elastic public cloud

(to handle burst of requests)

Cloud building blocks

I Applications | E.g. Email, Google Drive
| Development Platform | E.g., Google App Engine, AWS Lambda
| Resource Sharing | \Mrtualizing Resources

Infrastructure Physical Servers

Cloud computing services

* [nfrastructure as a Service (laaS)

- Leasing (virtualized) infrastructure remotely
- Configurable CPU, memory, disk, and network
_ bandwidth Resource sharing, sandboxing

_ Most flexibility in software development

* Platform as a Service (Paa$S)

- To facilitate creation of cloud software
- Abstract away the management of underlying
- infrastructure Built-in scaling

Amazon Amazon
EC2 S3

AWS Lambda

A

-G~
App Engine

Cloud computing services

* Software as a Service (SaaS) M
- Software and data are hosted on the cloud
- Often accessed by using a web browser or an mobile app

- Multitenant
- Provider handles software updates and patches

- Limitations
- Vendor lock-in

- Hard to customize
- Data security

AWS services

S3 EBS

Database: RDS
Aurora

Storage:

SaaS

Amazon Redshift

amazon
DynamoDB

Compute: “

P @

EC2 Lambda

g Dt o amazon
Big Data: ﬂl” "" I?I\TRZ

Athena
@ Amazon
SageMaker

AWS Simple Storage Service (S3)

* Object Storage

- Just want to store some bytes

 Key-Value API

- Each objectis associated with a key (unique with a bucket)

- PUT(key, value): create/replace a whole object

- GET(Key, <range>): read a byte range in the object

- LIST(<startKey>): list keys in the bucket in order (return 1000 per call)
 Eventual Consistency

- But guarantees read-your-own-writes

AWS Simple Storage Service (S3)

Simple key-value HTTP(S) interface

No in-place update, object must be written in full

But can read part of an object

e High access latency (10s - 100s ms)
Aggregated bandwidth scales well

e Performance could vary

Unbeatable availability and durability

Super cheap

Ideal Use Case

Large data volume
Data mostly immutable

Latency-insensitive app

AWS Elastic Compute Cloud (EC2)

e Rentvirtual machine instances “

* Awide range of instance types EC2
- Overall “size”
- Different optimization emphasis: CPU, memory, storage, GPU, ...

* Pricing
- On-demand: pay-as-you-go
- Reserved instance
- Spotinstance

AWS Lambda

* Serverless Computing
“...is acloud computing execution model in which the cloud provider runs @
the server, and dynamically manages the allocation of machine resources” Lambda
— Wikipedia

- Cloud providers execute code for developers
- A.k.a. Function as a Service (FaaS)

- Developers do not need to worry about:

Instance configuration, management, ...

Resource provisioning & Scaling

Fault-tolerance

- No persistent states

AWS Lambda

Upload Code @

AWS Lambda

Reserve Pool

PG ACIC N
| = &

| A
r— = = = 1

AWS Lambda

@@

ol = e

1 @ @ _
r————— 1

Latency < 1s

AWS Lambda

Upload Code

Reserve Pool

//)bo
4‘@

Charged in 100ms granularity

|
|
|
Latency < 1s I
|
|

AWS Lambda

Upload Code Can support massive

parallelism

Reserve Pool

//)bo
4‘@

Charged in 100ms granularity

|
|
|
Latency < 1s I
|
|

AWS Lambda

Upload Code Can support massive
parallelism

Reserve Pool

7,
Q Limitations
EC2
Limited execution time (15min) (3 a
Limited resource =
Latency < 1s No direct communication

Charged in 100ms granularity

Cloud databases: outline

e Cloud Computing & Cloud Services
e Storage and Compute Disaggregation
e Cloud Data Warehouses

e Storage Models

Shared-nothing architecture

Interconnection

Shared-nothing architecture

Interconnection

HER HER
HER == HER
_— —
HER HER
HER HER
— —
PROS CONS
“ Horizontal Scalability - Cross-machine operations

- Simple and slegant design - Dataredistribution at cluster resizing

Separating compute and storage nodes

Interconnection

Storage Area Network

o - o o i} - i} - o o i

Separating compute and storage nodes

Interconnection Stateless
Used as cache

2= B (=3
Tanjani} T} ST

Separating compute and storage nodes

Key Benefit:

Compute and storage can
scale independently

“= Performance depends on
network latency and bandwidth

B

Separating compute and storage nodes

Key Benefit:

Compute and storage can
scale independently

“= Performance depends on
network latency and bandwidth

B

Memory Disaggregation ?

Cloud databases: outline

e Cloud Computing & Cloud Services
e Storage and Compute Disaggregation
e Cloud Data Warehouses

e Storage Models

Database workloads

* Online Transaction Processing (OLTP)
* Transactions that read/update a small amount of data each time.
* Each transaction finishes in a short time (e.g., 1 or 0.1 milliseconds)

* Online Analytical Processing (OLAP)

« Complex queries that read a lot of data to compute joins/aggregates.
* A query can take up to hours or days.

* Datais typically either unchanged or insert-only.

* A querytypically does not take locks. The DBMS uses a special way to maintain
consistency if there are inserts.

* Hybrid Transaction + Analytical Processing
* OLTP + OLAP together on the same database instance

Database workloads

Complex
>
=
LAP
S
o)
o
-
: OLTP

Simple

Write-Heavy Read-Heavy
Workload Focus

Online Transaction Processing (OLTP)

Example: online shopping, stock market transactions, ...

SELECT *
FROM ShoppingCart
WHERE customerID = ...

INSERT INTO Orders
VALUES (...)

UPDATE Accounts
SET balance = ...
WHERE customerID = ...

Online Transaction Processing (OLTP)

Example: online shopping, stock market transactions, ...

- Simple, short-lived transactions (ms)
Only touch a small amount of data SEHSCY
i FROM ShoppingCart
- Insert- and update-heavy WHERE customerID = ...
- Fewtable joins
- Skewed access towards recent data INSERT INTO Orders
- Queries often predefined VALUES (...)
] UPDATE Accounts
Large number of concurrent operations SET balance = ...
WHERE customerID = ...

Online Analytical Processing (OLAP)

with vi as|
select i_category, i_brand, cc_name, d_year, d_moy,
sum(cs_sales_price) sum_sales,
avg(sum(cs_sales_price)) over
(partition by i_category, i_brand,
. . cc_name, d_year)
Example: data analytics, business report, ... avg_montny_satos,
rank() over
(partition by i_category, i_brand,
cc_name
order by d_year, d_moy) rn
from item, catalog_sales, date_dim, call_center
where cs_item_sk = i_item_sk and
cs_sold_date_sk = d_date_sk and
cc_call_center_sk= cs_call_center_sk and
(
d_year = 1999 or
{ d_year = 1999-1 and d_moy =12) or
{ d_year = 1999+1 and d_moy =1)
)
group by i_category, i_brand,
cc_name , d_year, d_moy),
v2 as|
select v1.i_category ,vl.d_year, vl.d_moy ,vl.avg _monthly_sales
,vl.sum_sales, vl_lag.sum_sales psum, vl_lead.sum_sales nsum
from vl, v1 vl_lag, vl vl_lead
where v1.i_category = vl_lag.i_category and
vl.i_category = vl_lead.i_category and
vl.i_brand vl_lag.i_brand and
vl.i_brand = vl_lead.i_brand and
vl.cc_name = vl_lag.cc_name and

vl.cc_name = vl_lead.cc_name and
vli.rn = vl_lag.rn + 1 and
vi.rn = vl_lead.rn - 1)
select *
from v2
where d_year = 1999 and
avg_monthly_sales > @ and
case when avg_monthly_sales > @ then abs(sum_sales - avg_monthly_sales) / avg_monft
order by sum_sales - avg_monthly_sales, 3
limit 100;

Online Analytical Processing (OLAP)

Example: data analytics, business report, ...

- Complex, long-running aggregations

Large table scans

Often joins multiple tables
Historical data

Queries often ad hoc

Heavy compute on large volume of data

Mostly reads with periodic batch inserts

with vl as
select i_category, i_brand, cc_name, d_year, d_moy
sum(cs_sales_price) sum_sales
avg(sum(cs_sales_price over
partition by i_category, i_brand
cc_name, d_year
avg_monthly_sales
rank over
partition by i_category, i_brand
cc_name
order by d_year, d_moy) rn
from item, catalog_sales, date_dim, call_center
where cs_item_sk i_item_sk and
cs_sold_date_sk d_date_sk and
cc_call_center_sk= cs_call_center_sk and

d_year 1999 or
d_year 1999-1 and d_moy =12) or
d_year 1999+1 and d_moy =1

group by i_category, i_brand
cC_name d_year, d_moy
v2 as
select v1.i_category ,vl.d_year, vl.d_moy ,vl.avg _monthly_sales
vl.sum_sales, vl_lag.sum_sales psum, vl_lead.sum_sales nsum
from vl, v1 vl_lag, vl vl_lead
where v1.i_category vl_lag.i_category and
vl.i_category vl_lead.i_category and
vl.i_brand vl_lag.i_brand and
vl.i_brand vl_lead.i_brand and
vl.cc_name vl_lag.cc_name and
vl.cc_name vl_lead.cc_name and
vi.rn vli_lag.rn 1 and
vi.rn vl_lead.rn 1
select
from v2
where d_year 1999 and
avg_monthly_sales @ and

case when avg_monthly_sales @ then abs(sum_sales avg_monthly_sales

order by sum_sales avg_monthly_sales, 3
limit 100

avg_mont

OLAP Schema

An OLAP database is typically composed of fact tables and dimension tables.

Fact tables record information about individual events, such as sales, and are
usually very large.
 Example: sales information for a retail store, with one tuple for each item that is sold.

* Dimension tables includes the attributes for describing the data in the fact
table.
* Example: Time and location for each item that is sold

Fact tables and dimension tables are connected via foreign keys.

Star schema

Dealer Date Dim

Dealer ID Date_ID
Location_ID Year
Country_ID - Month
Dealer_NM - Quarter
Dealer CNTCT Date
Revenue ‘
Dealer ID
Model_ID
O i)
Date ID
Branch Dim Units_Sold Product
Branch ID Revenue ~ Product_ID
Name ' - ‘l PrOdUCt_Name
Address Model_ID
Country Variant ID

Snowflake schema

Dealer Date Dim
Dealer_ID Date_ID
Location_ID Year
* Country ID Month
NG Quarer
Dealer CNTCT Date
Revenue
Dealer ID
Model_ID

- Branch_ID
Date ID
Branch Dim Units_Sold Product
Branch ID Revenue Product ID
Name Product_Name
Address Model _ID
Country Variant_ID

Observation

* The way we store data will significantly impact the performance of processing
queries.

* The relational model does not specify that the DBMS must store all of a
tuple’s attributes together on a single page.

* This may not be the best layout for OLAP workloads...

Row-store

Table is 2D, but storage is 1D array

id name | age balance
105 Alice 18 1000
102 Bob 25 2000
104 | Charlie 18 3000
101 David 18 1500
103 Emily 20 2500

Row-store

Table is 2D, but storage is 1D array

id name | age balance
105 Alice 18 1000
102 Bob 25 2000
104 | Charlie 18 3000
101 David 18 1500
103 Emily 20 2500

Tuple-by-tuple Storage

Pros

- Fasttuple insertion/deletion

- FastSELECT *

Cons

Ideal for OLTP

- SELECT avg(balance) FROM T GROUP BY age
- Reading useless data: wasting I/0O

105 Alice 18 1000

102 Bob 25 2000

104 Charlie 18 3000

104 David 18 1500

103 Emily 20 2500

Column-store

Table is 2D, but storage is 1D array

id name | age balance
105 Alice 18 1000
102 Bob 25 2000
104 | Charlie 18 3000
101 David 18 1500
103 Emily 20 2500

Column-by-column Storage

105102 104 101 103 JAlice Bob Charlie David Emily |18 2518 18 20 {1000 2000 3000 1500 2500

Id name age balance

Column-store

Table is 2D, but storage is 1D array

Pros Ideal for OLAP

id | name | age balance - Only scan relevant attributes
105 Alice 18 1000 - Fast and efficient query processing
102 Bob 25 2000
Cons
104 | Charlie | 18 3000 - INSERT INTO TVALUES (a, b, c, d, ...)
101 David 18 1500 - SELECT * ...
103 Emily 20 2500 - Extra work in tuple splitting and stitching

Column-by-column Storage

105102104 101 103

Alice Bob Charlie David Emily

18251818 20 |1000 2000 3000 1500 2500

Id

name

age balance

Column-store is everywhere

* Becomes popularin the late 2000s

- Vertica (C-Store), MonetDB, VectorWise

 Every major data warehouse today

Teradata, Amazon Redshift, Snowflake, Google BigQuery, ClickHouse,
Greenplum ...

* Traditional row-stores intending to support OLAP-type queries
- Oracle 12c, SQL Server, IBM DB2 BLU

Hybrid columnar format

Tables are horizontally portioned into files, where each file is stored in columnar format

File 1 File 2 File 3 | [EEEE age balance | .
! — ' ! C— * ¢ p— . File 1 E Alice 18 1000 » Adisk page in the
| name : | age + | balance ' E David 18 1500 . original proposal
| Alice | i 18 |: | 1000 |: » |_Bob 23 2000 | :
| pavid [:] 18 |: i 1500 |: RELITEErr TICEETEErRRr AR EErry
: Bob : : 23 : : 2000 : E name age balance :
: —1: S : b | Emily 20 2500 | :
: Emily 1 20 |: | 2800 [: File 2 ' I Bob — o || ¢
N R A DL R ool + [_Emily 22 3500 | :
.| Emily |] 22 | | 3500 |: S LLLLLILL mme e memesemeeene
] Bob |] 19 : .| 4000 | + |_name age balance |
| Charlie |+ :] 20 |: .| 4500 |: File 3 | | Be® 19 4000 | :
| Emiy | |19 |: ' 5000 |: | charlie 20 4500
N —— . b e - | — ‘ + |_Emily 19 5000 ;

Apache Parquet

—————— > - I
Row Group 1 Column Page 1 Page Header
. Chunk1 | \
Row Group 2 \\\ Column \ Page 2 \\\ Definition Levels
Chunk2]f
N _ N ' K Repetition Levels
\\ Column \\ Page p \\ Values
"dL_Chunkc < .
Row Group r
o -
/" || Metadata: version, schema, || .~ Column 1 Metadata: offset,
Bloom Filter / type, encoding, compression,
/ zone maps...
Page Index g Row Group 1 Metadata p
Footer : \\ .
Footer Length \\\A Row Group r Metadata \‘ Column c Metadata

Apache ORC

Col 1 Zone Map

Col 1 Bloom Filter

Col c Zone Map

Col c Bloom Filter

Row Group 1

Index (logical)

Data

Footer

Row Group 2

Row Group r

ColChunkStats

Footer

Footer Length

o

[------- >
/ Column Present Stream
| Chunkd1 |
Column Length Stream
Chunk 2
Data Stream
'
. Column
"¢ Chunk c
4 : <
/ Metadata: version, K
number of rows, ... offset,

Row Group 1 Metadata

Row Group r Metadata

index length,
data length,
\ footer length

Columnar compression

Dictionary Encoding

Run-length Encoding

Bit-Packing Encoding

Bitmap Encoding

Delta Encoding

Learned encoding

Naive Compression

Compress data using a general-purpose algorithm. The scope of
compression is only based on the data provided as input.

— LZO (1996), LZ4 (2011), Snappy (2011), Oracle OZIP (2014), Zstd (2015)

Considerations

— Computational overhead
— Compress vs. decompress speed.

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard

Naive compression

The DBMS must decompress data first before it can be read and
(potentially) modified.

— Repeated compression and decompression will be the bottleneck.

These schemes also do not consider the high-level meaning or
semantics of the data.

Dictionary encoding

Replace frequent values with smaller fixed-length codes and then maintain a
mapping (dictionary) from the codes to the original values

— Typically, one code per attribute value.

— Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast encoding and decoding for both
point and range queries.

Dictionary encoding example

SELECT * FROM users
WHERE name = 'Andy'

Original Data

Andrea
Prashanth
Andy
Matt

Prashanth

=

=

SELECT * FROM users
WHERE name = 30

Compressed Data

_nane @l value code
10 Andrea 10
20 Prashanth 20
30 Andy 30
40 Matt 40
20

Amfoﬁagq

Dictionary encoding: order preserving

The encoded values need to support the same collation as the original values.

SELECT * FROM users
WHERE name LIKE 'And%'

Original Data

Andrea

Prashanth

Andy

Matt

Prashanth

=

=

SELECT * FROM users

WHERE name BETWEEN 10 AND 20

Compressed Data

name I code '\

10 Andrea 10
40 Andy 20
20 Matt 30
30 Prashanth 40
40

/\JEIBED!(]
pa140§

Dictionary: order preserving

SELECT name FROM users
WHERE name LIKE 'And%'

SELECT DISTINCT name
FROM users
WHERE name LIKE 'And%'

Original Data

Andrea

Prashanth

Andy

Matt

Prashanth

» Still must perform scan on column

» Only need to access dictionary

Compressed Data

value _ code AUR®)
10 Andrea 10 Q (On
» 40 Andy 20 > o3
20 Matt 30 - M
30 Prashanth | 40 | Q -
40 <

Run-length encoding

Compress the same continuous values in a single column into triplets:

— The value of the attribute.
— The start position in the column segment.

— The # of elements in the run.

Requires the columns to be sorted intelligently to maximize compression
opportunities.

Run-length encoding

Original Data Compressed Data
1 Y 1 (v,0,3)
2 Y 2 (N,3,1)
3 Y 3 (Y,4,1)
4 N » 4 (N,5,1)
6 Y 6 (Y,6,2)
! N 7| RLE Triplet
8 Y 8 - Value
9 Y 9 - Offset

- Length

Run-length encoding

Sorted Data Compressed Data

1 Y 1 (Y,0,6)

2 Y 2 (N,7,2)

3 Y 3

6 Y » 6

8 Y 8

J Y 9 | RLE Triplet

4 N 4 - Value

7 N 7 - Offset

- Length

Bit packing

If the values for an integer attribute is

smaller than the range of its given data

type size, we can reduce the number of

bits to represent each value.

Use bit-shifting tricks to operate on

multiple values in a single word.

Original Data Original:

8 x 32-bits =
256 bits
13 =—p1 00000000 00000000 00000@00] 00001101
191 =1 00000000 00000000 00000000f 10111111
56 —> | 00111000
92 —> | 01011100
81 —> | 01010001
120 > | 01111000
231 =1 00000000 00000000 00000000] 11100111
1 72 =1 00000000 00000000 0000000011@1@11@@
Compressed:
8 x 8-bits =

64 bits

Patching/mostly encoding

A variation of bit packing when attribute’s values are “mostly” less than
the largest size.

— The remaining values that cannot be compressed are stored in their raw form.

Original Data Compressed Data
. . in mostl offset value
Original: 3 199999999 Compre_ssed:
8 x 32-bits = U o valid (8 x 8-bits) +
256 bits 3 o 16-bits + 32-bits
81 81 =112 bits
120 120
231 231
172 172

Bitmap encoding

Store a separate bitmap for each unique value for an attribute

— The it" position in the Bitmap corresponds to the i” tuple in the table.
— Each bitindicates whether the attribute of the ith tuple is this value.

— Typically segmented into chunks to avoid allocating large blocks of contiguous memory.

Only practical if the number of distinct values is low.

Some DBMSs provide bitmap indexes.

https://dbdb.io/browse?indexes=bitmap

Bitmap encoding example

Original Data

Ol |IN]|OIDdlWIN]—-

|

»

Original:
9 x 8-bits = 72 bits

Compressed: _
16 bits + 18 bits = 34 bits

Compressed Data

o B 2 x 8-bits =
e - 22

=

sDead
1

Ol |IN|OO D> WIN]—

—_ =R = —

o ||, |, |||

)

9 x 2-bits =
> 18 bits

Bitmap encoding example

Assume we have 10 million tuples.

43,000 zip codes in the US.
— 10000000 x 32-bits =40 MB
— 10000000 x 43000 =53.75 GB

Every time the application inserts a new
tuple, the DBMS must extend 43,000
different bitmaps.

CREATE TABLE customer (
id INT PRIMARY KEY,
name VARCHAR(32),
email VARCHAR(64),
address VARCHAR(64),

|zip_code INT |

);

Delta encoding

Recording the difference between values that follow each other in the same
column.

— Store base value in-line or in a separate look-up table.

— Combine with RLE to get even better compression ratios.

Original Data Compressed Data Compressed Data
12:00 99.5 12:00 99.5 12:00 99.5
12:01 99.4 +1 -0.1 (+1,4) -0.1
12:02 99.5 +1 +0. 1 +0. 1
12:03 99.6 +1 +0. 1 +0.1
12:04 99.4 +1 -0.2 -0.2

5 x 64-bits 64-bits + (4 x 16-bits) 64-bits + (2 x 16-bits)

= 320 bits = 128 bits = 96 hits

Value sequence compression

Value Sequence: v,,V,,Vs,...,V,

What’s the theoretical bound?

- Ifi.i.d. random variables: Shannon’s Entropy

- If values are serially correlated: Kolmogorov Complexity

Learned data compression

Values 100 103 107 106 110 200 210 223 236 245

Learned data compression

Values 100 103 107 106 110|200 210 223 236 245

Models 2.3x + 98.1 11.6x + 188
Deltas 0 0 2 -1 0 I 0 -1 0 2 -1

Values Uion) = (Vo vy Vn—1)
Partitions 17[1<0=0,k1) 1_7>[}'\",1,l'<2) 1_7>[km—1,km=n)
Models F, F, Fin-1
Deltas Ay =v; — Fi(vy), for v; € Uik, k)

m-—1

min z (||F]|| + (kj+1 — k]) (maxg;;_l[logz 51]))

J=0

Random Access ms

) e - - -

—Q————————————

o=

B o e - —_

™

~
O = = e = = = = = -

e) e e e e e e e e - -
T

Delta

LeCo-var

Elias-Fano

LeCo

® FOR
O

Compression Ratio %

Toward next-gen columnar format

* Lesson 1: Dictionary Encoding is the most effective lightweight encoding algorithm for a
columnar storage format because most real-world data have low NDV ratios.

* Lesson 2: Itisimportant to keep the encoding scheme simple in a columnar storage
format to guarantee a competitive scan + decoding performance.

* Lesson 3: A columnar storage format should enable block compression cautiously on
modern hardware because the bottleneck of query processing is shifting from storage
to computation.

* Lesson 4: The metadata layout in a columnar storage format should optimize for fewer
random probes, especially with cloud storage.

 Much better support for ML workloads!

Conclusion

* [tisimportant to choose the right storage model for the target workload:

— OLTP = Row Store
— OLAP = Column Store

* OLAP databases rely on columnar compression for high compression speed
and compression ratio.

* Compressed data can be directly used to support some queries without
decompression.

Cloud databases: outline

e Cloud Computing & Cloud Services
e Storage and Compute Disaggregation
e Cloud Data Warehouses

e Storage Models

Data storage

In distributed data analysis, data is typically distributed across nodes.

* Option 1: Data is partitioned and co-located with compute nodes.
* Thisis the shared-nothing architecture we discussed eatrlier.
* Queries are typically pushed to the nodes where the data is.

* Option 2: Data is partitioned and stored in a dedicated storage layer.
* Thisis more modern architecture in the cloud.
* Datais pulled from the storage layer to the compute layer.

* Optimization: retrieving data from the storage layer with basic filtering capability.
* S3select supports retrieving data from CSV/JSON/Parquet.

Storage models

Choice #1: N-ary Storage Model (NSM)

 Thisis for OLTP and what we learned before.

Choice #2: Decomposition Storage Model (DSM)
* Thisis for OLAP

Choice #3: Hybrid Storage Model (PAX)
* Thisis for HTAP (Hybrid Transactional and Analytical Processing) and OLAP workloads.

N-Ary Storage Model (NSM)

* The DBMS stores (almost) all attributes for a single tuple contiguously on a
single page.

 |tis also known as a “row store.”

* |deal for OLTP workloads where queries are more likely to access a small

number of individual rows and execute write-heavy workloads.

* NSM database page sizes are typically some constant multiple of 4 KB
hardware pages.
* Oracle (4 KB), Postgres (8 KB), MySQL (16 KB)

NSM: Physical Organization

A disk-oriented NSM system stores a tuple’s fixed-
length and variable-length attributes contiguously
in a single-slotted page.

The tuple’s record id (page#, slot#) is how the
DBMS uniquely identifies a physical tuple.

Row #0
Row #1
Row #2
Row #3
Row #4
Row #5

header

b1

b4

ad bo o> Wpacer IEY
c a2 b2 [e2
a3 b3 mmme a4

(o ad bb (o8d)

ok - header

Slot Array

NSM: OLTP example

WHERE userName = ?
AND userPass = ?

SELECT * FROM useracct

INSERT INTO useracct
VALUES (?,7,..7)

=

Index

¥

nnnnnnnnn

NSM Disk Page
header | userID JuserName|userPass|hostname| lastLogin
header | userID |userName|userPass|hostname] lastLogin
header | userID JuserNameluserPass|hostname| lastlLogin
header | userID |JuserName|userPass|hostname| lastlLogin

Disk

Database File

NSM: OLAP example

SELECT COUNT(U.lastlogin),
EXTRACT (month FROM [U.IastLogin) AS month

FROM useracct AS U
WHERE |U. hostname| LIKE '%.gov'
GROUP BY EXTRACT(month FROM[U.IastLoginl)

| NSM Disk Page

header Q| userID JuserName|userPassfghostname] lastlLogin

/
/

AN
.
‘\
N
s~
AN

header Q| userID JuserName]userPassfghostname] lastlLogin

- header | userlID |userName|userPassffhostname] lastlLogin

header J userID JuserName|userPassfjhostname] lastlLogin

Disk

Database File

Useless Data

NSM: summary

Advantages

— Fast inserts, updates, and deletes for single rows.
— Good for queries that need the entire tuple (OLTP).

— Can use index-oriented physical storage for clustering.

Disadvantages
— Not good for scanning large portions of the table and/or a subset of the attributes.
— Terrible memory locality for OLAP access patterns.

— Notideal for compression because of multiple value domains within a single page.

Decomposition Storage Model (DSM)

* The DBMS stores a single attribute of all tuples contiguously in a block of

data.
— “column store” mentioned eatrlier.

* |deal for OLAP workloads where read-only queries perform large scans over a
subset of the table’s attributes.

* DBMS is responsible for combining/splitting a tuple’s attributes when

reading/writing.

DSM: Physical Organization

* Store each attribute and its metadata (e.g.,

nulls) in a separate array.

— Most systems construct physical tuples using
offsets into these arrays if an array includes fixed-
length data.

— Need to handle variable-length values...

* Each array is stored as a separate file with a
dedicated header area for metadata about
the entire column.

File #2 File #1

File #3

Col A||ColB ColC

rRow #0 | [NETH ((HETH

Row #1

Row #2

Row #3

Row #4

Row #5
header null bitmap

ao al a2 a3 a4 ab
header null bitmap

o]/ o) b2 b3 b4 Db5
header null bitmap

DSM: database example

The DBMS stores the values of a single attribute across multiple tuples
contiguously in a page.

DSM Disk Page

header | userID JuserNamejuserPassfhostname] lastLogin

riD o1 .
use lastLogin] header | userID JuserName]userPassfhostname] lastlLogin

=]

header | userID JuserNamejuserPassfhostname] lastLogin

e e ——]]
o e]
] X ————" header | userID JuserName]userPassfhostname] lastLogin

Sae
S
S

userName == - .

=N

Disk

Database File

y \ s
| userPass]

DSM: database example

SELECT COUNT(U.lastLoginl),
EXTRACT(month FROM [U.IlastLogin)) AS month

FROM useracct AS U
WHERE |U.hostname| LIKE '%.gov'
GROUP BY EXTRACT(month FROM [U.TastLogin)

DSM Disk Page

Disk

header lastlogin f| lastLogin | lastlLogin | lastLogin
2 lastlLogin j| lastLogin | lastlLogin | lastLogin | lastlLogin | lastlLogin
o / K
m =====T lastlogin | lastLogin | lastLoginl§ lastlLoginf lastLogin | lastlLogin
(© S===== | | | . | .
0 . e —— 1 [N lastLogin || lastlogin || lastLogin | lastlLogin | lastLogin | lastlLogin

——m—— ™~ —— - ~~\‘\

8

DSM: tuple construction

Choice #1: Fixed-length Offsets

— Each value is the same length for an attribute.
— To find the ith tuple, we could find the ith value for each column using the offset.

Choice #2: Embedded Tuple Ids
— Each value is stored with its tuple id in a column.

Offsets Embedded Ids
s fcffo 3 B3

W@—‘—‘|
®—‘l\)w|

w N =) O
W IN [/
wiIiNn |-

Tradeoffs

* Fixed-length Offsets
* + No metadata is required for constructing tuples.
* + Fast tuple construction.
* - Only works for fixed-length attributes.
* - The positions of the arrays for separate attributes should be the same.

* Embedded Tuple Ids

+ Works for both fixed-length and variable-length attributes.

+ The positions of the arrays for separate attributes could be different.
* This enables more compression opportunities.

- Additional metadata (i.e., tuple lds) for constructing tuples.

- Tuple construction is slower.

DSM: Summary

Advantages

— Reduces the amount wasted I/O per query because the DBMS only reads the data that it
needs.

Faster query processing because of increased locality and cached data reuse.

_>
— Better data compression (more on this in later slides).

Disadvantages

— Slow for point queries, inserts, updates, and deletes

Observation on DSM

OLAP queries rarely access a single column in a table by itself.
— At some point during query execution, the DBMS must get other columns and stitch the

original tuple back together.

But we still want to store data in a columnar format to get the storage +
execution benefits.

So, we need a columnar scheme that stores attributes separately but keeps the
data for each tuple physically close to each other...

PAX storage model

Partition Attributes Across (PAX) is a hybrid storage
model that sits between NSM and DSM.

The goal is to get the benefit of faster processing on
columnar storage while retaining the spatial locality
benefits of row storage.

Weaving Relations for Cache Performance

Anastassia Ailamaki ¥ David J. DeWitt
Camegie Mellon University Univ. of Wisconsin-Madison
natassa@cs.cmu.edu dewitt@cs.wisc.edu

Abstract

Relational database systems have traditionally optimzed for
1O performance and organized records sequentially on disk
pages using the N-ary Storage Model (NSM) (aka., slotted
pages). Recent research, however, indicates that cache utilization
and performance is becoming increasingly important on modern
platforms. In this paper, we first demonstrate that in-page data
placement is the key to high cache performance and that NSM
exhibits low cache utilization on modern platforms. Next, we pro-
pose a new data organization model called PAX (Partition
Attributes Across), that significantly improves cache perfor-
mance by grouping together all values of each attribute within
each page. Because PAX only affects layout inside the pages, it
incurs no storage penalty and does not affect VO behavior.
According 1o our experimental results, when compared 1o NSM
(a) PAX exhibits superior cache and memory bandwidth utiliza-
tion, saving at least 73% of NSM's stall time due to data cache
accesses, (b) range selection queries and updates on memory-
resident relations execute 17-25% faster, and (c) TPC-H queries
involving 110 execute 11-48% faster.

1 Introduction

The communication between the CPU and the secondary
storage (I/0) has been traditionally recognized as the
major database performance bottleneck. To optimize data
transfer to and from mass storage, relational DBMSs have
long organized records in slotted disk pages using the N-
ary Storage Model (NSM). NSM stores records contigu-
ously starting from the beginning of each disk page, and
uses an offset (slot) table at the end of the page to locate
the beginning of each record [27].

Unfortunately, most queries use only a fraction of
each record. To minimize unnecessary 1/O, the Decompo-
sition Storage Model (DSM) was proposed in 1985 [10].
DSM partitions an n-attribute relation vertically into n
sub-relations, each of which is accessed only when the
corresponding attribute is needed. Queries that involve
multiple attributes from a relation, however, must spend

* Work done while author was at the University of Wisconsin-Madison.

Permission 1o copy without fee ail or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee andior special permission from the Endowment
Proceedings of the 27th VLDB Conference,

Roma, Italy, 2001

Mark D. Hill Marios Skounakis
Univ. of Wisconsin-Madison Univ, of Wisconsin-Madison
markhill@cs wisc.edu marios@ cs wisc edu

tremendous additional time to join the participating sub-
relations together. Except for Sybase-1Q [33], today’s rela-
tional DBMSs use NSM for general-purpose data place-
ment [20][29][32].

Recent research has demonstrated that modern data-
base workloads, such as decision support systems and spa-
tial applications, are often bound by delays related to the
processor and the memory subsystem rather than /O
[20][5][26]. When running commercial database systems
on a modern processor, data requests that miss in the cache
hierarchy (i.e., requests for data that are not found in any
of the caches and are transferred from main memory) are a
key memory bottleneck [1]. In addition, only a fraction of
the data transferred to the cache is useful to the query: the
item that the query processing algorithm requests and the
transfer unit between the memory and the processor are
typically not the same size. Loading the cache with useless
data (a) wastes bandwidth, (b) pollutes the cache, and (c)
possibly forces replacement of information that may be
needed in the future, incurring even more delays. The
challenge is to repair NSM’s cache behavior without com-
promising its advantages over DSM

This paper introduces and evaluates Partition
Attributes Across (PAX), a new layout for data records
that combines the best of the two worlds and exhibits per-
formance superior to both placement schemes by eliminat-
ing unnecessary accesses to main memory. For a given
relation, PAX stores the same data on each page as NSM.
Within each page, however, PAX groups all the values of a
particular attribute together on a minipage. During a
sequential scan (e.g., to apply a predicate on a fraction of
the record), PAX fully utilizes the cache resources,
because on each miss a number of a single attribute’s val-
ues are loaded into the cache together. At the same time,
all parts of the record are on the same page. To reconstruct
a record one needs to perform a mini-join among
minipages, which incurs minimal cost because it does not
have to look beyond the page.

We evaluated PAX against NSM and DSM using (a)
predicate selection queries on numeric data and (b) a vari-
ety of queries on TPC-H datasets on top of the Shore stor-
age manager [7]. We vary query parameters including
selectivity, projectivity, number of predicates, distance
between the projected attribute and the attribute in the
predicate, and degree of the relation. The experimental
results show that, when compared to NSM, PAX (a) incurs
50-75% fewer second-level cache misses due to data

PAX: physical organization

* |t horizontally partitions rows into groups and

vertically partitions their attributes into columns.

* Each row group contains its metadata header
about its contents.

* PAX-style formats are widely adopted in big data
processing

* ORC (Optimized Row-Column File)

* Parquet

PAX File

ColA ColB ColC
row #0 | [IETN || X
Row #1
Row #2
Row #3
Row #4
Row #5
header
header
a0 al a2
header
a3 a4 ab b3 b4 b5

dnoig moy dnoio moy

Observation on OLAP workloads

* OLAP requires accessing a lot of data, so I/0O will be its main bottleneck
during query execution.

* The DBMS can compress pages to reduce the data size and |/O operations.

Push query to data (shared nothing)

SELECT * FROM R JOIN S Node 1 i te0
ON R.id = S.id el
#%Q P15, id:1-100
A

I R4S
3R IDs [101,200] Qesult: RIS |
ZZ
Application
Server

Node 2
SrRTRTIETT
#%ﬂ P2+5. id:101-208

Pull data to query (shared storage)

P1>ID:1-100
SELECT * FROM R JOIN S Node 1
ON R.id = S.id #% %eABC]

y N

ZZE RD4 S
7l IDs [101,200]
ZZEa

Application

Result: R} S

Server —Y

[Page)@

P2>1D:101-200

Let the system select
only the data needed.

r

Storage

~

Observations

* [n many cases, new data arrives periodically and itis common that users are
more interested in more recent data than old data.

* Therefore, it is important to use column-oriented storage (DSM) to
iIncrementally store and compress a group of rows rather than all rows.

* Amore common format is PAX: hybrid row-column storage
* Representative formats: Parquet, ORCFile

OLAP summary

* OLAP is a specialization of relational databases to support analytical processing

and report generation
* Typically done in large “batch” operations on the entire database

* Rule of thumb: pick as “coarse-grained” materialized views or query results as
will allow you to construct all the cross-tabs that may be necessary

Cloud databases: outline

e Cloud Computing & Cloud Services
e Storage and Compute Disaggregation
e Cloud Data Warehouses

e Storage Models

Credits

« Huanchen Zhang, Tsinghua
« Andy Pavlo, CMU
 Dixin Tang, UT Austin

	Slide 1: CS4221 Cloud Databases I. Fundamentals
	Slide 2: Cloud databases: outline
	Slide 3: The booming cloud database market
	Slide 4: Why are cloud databases different?
	Slide 5: Traditional vs. cloud databases
	Slide 6: Cloud computing
	Slide 7: Types of clouds
	Slide 8: Types of clouds
	Slide 9: Cloud building blocks
	Slide 10: Cloud computing services
	Slide 11: Cloud computing services
	Slide 12: AWS services
	Slide 13: AWS Simple Storage Service (S3)
	Slide 14: AWS Simple Storage Service (S3)
	Slide 15: AWS Elastic Compute Cloud (EC2)
	Slide 16: AWS Lambda
	Slide 17: AWS Lambda
	Slide 18: AWS Lambda
	Slide 19: AWS Lambda
	Slide 20: AWS Lambda
	Slide 21: AWS Lambda
	Slide 22: AWS Lambda
	Slide 23: Cloud databases: outline
	Slide 24: Shared-nothing architecture
	Slide 25: Shared-nothing architecture
	Slide 26: Separating compute and storage nodes
	Slide 27: Separating compute and storage nodes
	Slide 28: Separating compute and storage nodes
	Slide 29: Separating compute and storage nodes
	Slide 30: Cloud databases: outline
	Slide 31: Database workloads
	Slide 32: Database workloads
	Slide 33: Online Transaction Processing (OLTP)
	Slide 34: Online Transaction Processing (OLTP)
	Slide 35: Online Analytical Processing (OLAP)
	Slide 36: Online Analytical Processing (OLAP)
	Slide 37: OLAP Schema
	Slide 38: Star schema
	Slide 39: Snowflake schema
	Slide 40: Observation
	Slide 41: Row-store
	Slide 42: Row-store
	Slide 43: Column-store
	Slide 44: Column-store
	Slide 45: Column-store is everywhere
	Slide 46: Hybrid columnar format
	Slide 47: Apache Parquet
	Slide 48: Apache ORC
	Slide 49: Columnar compression
	Slide 50: Naïve Compression
	Slide 51: Naïve compression
	Slide 52: Dictionary encoding
	Slide 53: Dictionary encoding example
	Slide 54: Dictionary encoding: order preserving
	Slide 55: Dictionary: order preserving
	Slide 56: Run-length encoding
	Slide 57: Run-length encoding
	Slide 58: Run-length encoding
	Slide 59: Bit packing
	Slide 60: Patching/mostly encoding
	Slide 61: Bitmap encoding
	Slide 62: Bitmap encoding example
	Slide 63: Bitmap encoding example
	Slide 64: Delta encoding
	Slide 65: Value sequence compression
	Slide 66: Learned data compression
	Slide 67: Learned data compression
	Slide 68: Toward next-gen columnar format
	Slide 69: Conclusion
	Slide 70: Cloud databases: outline
	Slide 71: Data storage
	Slide 72: Storage models
	Slide 73: N-Ary Storage Model (NSM)
	Slide 74: NSM: Physical Organization
	Slide 75: NSM: OLTP example
	Slide 76: NSM: OLAP example
	Slide 77: NSM: summary
	Slide 78: Decomposition Storage Model (DSM)
	Slide 79: DSM: Physical Organization
	Slide 80: DSM: database example
	Slide 81: DSM: database example
	Slide 82: DSM: tuple construction
	Slide 83: Tradeoffs
	Slide 84: DSM: Summary
	Slide 85: Observation on DSM
	Slide 86: PAX storage model
	Slide 87: PAX: physical organization
	Slide 88: Observation on OLAP workloads
	Slide 89: Push query to data (shared nothing)
	Slide 90: Pull data to query (shared storage)
	Slide 91: Observations
	Slide 92: OLAP summary
	Slide 93: Cloud databases: outline
	Slide 94: Credits

