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Data lakes and warehouses: outline

 Data lakes and warehouses

e Case studies
 Snowflake
« Other offerings



Recall cloud systems

* Vendors provide database-as-a-service (DBaaS) offerings that are managed
DBMS environments.

* Newer systems are starting to blur the lines between shared-nothing
and shared-disk.

* Example: You can do simple filtering on Amazon S3 before copying data to
compute nodes.



Recall cloud systems

Approach #1: Managed DBMSs

* No significant modification to the DBMS to be "aware" that it is running in
a cloud environment.

* Examples: Most vendors

Approach #2: Cloud-Native DBMS

 System designed explicitly to run in a cloud environment.
 Usually based on a shared-disk architecture.

* Examples: Snowflake, Google BigQuery



Serverless databases

* Rather than always maintaining compute resources for each customer, a
"serverless" DBMS evicts tenants when they become idle.
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Serverless databases

* Rather than always maintaining compute resources for each customer, a
"serverless" DBMS evicts tenants when they become idle.
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Serverless databases

* Rather than always maintaining compute resources for each customer, a
"serverless" DBMS evicts tenants when they become idle.
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Serverless databases

Rather than always maintaining compute resources for each customer, a
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Serverless databases

* Rather than always maintaining compute resources for each customer, a
"serverless" DBMS evicts tenants when they become idle.
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Overbooking?

Sell more than have.
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Data warehouses

* A data management system that
stores current and historical data from
multiple sources in a business friendly
manner for easier insights and
reporting. Typically used for business
intelligence (Bl).

* ACID transactions

* Management features (backup and
recovery controls, gated controls, etc.)

* Performance optimizations (indexes,
partitioning, etc.)

* Limited support for ML and unstructured
data.
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Data lakes

* Repository for storing large amounts of CREATE TABLE foo (...).

structured, semi-structured, and
unstructured data without having to define a
schema or ingest the data into proprietary
internal formats. )
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Data lakes

Repository for storing large amounts of
structured, semi-structured, and
unstructured data without having to define a
schema or ingest the data into proprietary
internal formats.

CREATE TABLE foo (...);

INSERT INTO foo VALUES (...
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Data lakes

Repository for storing large amounts of
structured, semi-structured, and
unstructured data without having to define a
schema or ingest the data into proprietary
internal formats.

CREATE TABLE foo (...);

INSERT INTO foo VALUES (...
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Data lakes

Repository for storing large amounts of
structured, semi-structured, and
unstructured data without having to define a
schema or ingest the data into proprietary
internal formats.

SELECT * FROM foo




Data lakes

* Repository for storing large amounts of

structured, semi-structured, and SELECT * FROM foo
unstructured data without having to define a

schema or ingest the data into proprietary l
internal formats. ,
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Data lakes

* Repository for storing large amounts of

structured, semi-structured, and SELECT * FROM foo
unstructured data without having to define a
schema or ingest the data into proprietary l
internal formats. , Ry
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Snowflake S

b
XK snowflake

* The Snowflake Elastic Data Warehouse
- Target analytical queries to support business intelligence (Bl)

Founded at 2012, growing fast, largest software IPO (2020) ever
* Pure SaaS

Nothing to install, always on, always up-to-date

Ease of use, only pay for what you use

* Multi-Cloud Support



Snowflake architecture S
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Snowflake architecture L
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Recall from last lecture: storage models

Choice #1: N-ary Storage Model (NSM)

 Thisis for OLTP and what we learned before.

Choice #2: Decomposition Storage Model (DSM)
* Thisis for OLAP

Choice #3: Hybrid Storage Model (PAX)
* Thisis for HTAP (Hybrid Transactional and Analytical Processing) and OLAP workloads.



Table file format L

X snowflake

* Tables are horizontally partitioned
- Micro-partition: size = 10s MB, natural ingestion order

* Hybrid columnar (PAX) format

11| Queriestirst read header

Column 1

Column 3 Heavily Compressed

Column 3



Snowflake architecture L
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Virtual warehouses: the muscle Sy

Do

3K snowflake

Virtual Warehouse « Create, destroy, resize on demand

r——— —

New Warehouse
I Cq (q I Creating as (2] ACCOUNTADMIN

—_— —_—3 Name Size ®
L — —— — m— technicallyWarehouse [ X-Large 16 credits/hour b
—— —— —— — — Comment (optional) X-Small 1 credit/hour
I Small 2 credits/hour
CCB CCB I Medium 4 credits/hour
I _—6_ _—6_ . Large 8 credits/hour
I Advanced Warehouse Options

v X-Large 16 credits/hour
Auto Resume .
XD XD 2X-Large 32 credits/hour
_6" —_ I Auto Suspend 3X-Large 64 credits/hour

4X-Large 128 credits/hour
L I EE—— p— Suspend After (min)

Worker Node Cancel

EC2



Virtual warehouses: the muscle

Virtual Warehouse « Create, destroy, resize on demand

r——— —

(q Cq « Performance Isolation
B @

Shared data, private compute
Typical usage pattern

[
|
|
|
|

- Continuously-running VWs for repeating jobs

I @ @ I - On-demand VWs for ad-hoc tasks

I (—/Tg C_/Tg I « Ephemeral worker processes
I —— I « Columnar, Vectorized, Push-Based
| — —

ECo Worker Node



Execution engine design space

* Engine Type

- Interpretation
= Compilation (Code-Gen)

e Execution Model

= |terator / \olcano
= Fully-Materialized

= Vectorization

* Pipeline Direction

= Pull
= Push



Executing the plan

* Approach 1: Interpretation

%F]_E Pre-compiled

) 2=

Physical Plan gye— Operators
Read and translate

one line at atime
> | Interpreter —> 00100110...

* Approach 2: Compilation

LLVM
—




Aside: interpreting vs. compiling

 Complier: bring the pre-translated sheet
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Aside: interpreting vs. compiling

 Complier: bring the pre-translated sheet
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Aside: interpreting vs. compiling

 Complier: bring the pre-translated sheet

R%f

BT ek Interpreter
X A7 7K 48 I m

A (@™ g v
1) - L)

Pros Cons
- No need for code analysis beforehand - Needinterpreters
- Easierto test and debug - Execution is often slower

Cross-platform



Aside: interpreting vs. compiling

 Complier: bring the pre-translated sheet

RYF : Pros
TRk Compiler Hello, a
N double-shot - Faster, ready-to-run
HE Thank you. ode better optimize
157 151
Cons

- Long extra compile time

Hello, a - Requires more memor
double-shot : d

Latte to go, - Hard to get it right
Thank you.

- Worse portability



Execution engine design space

* Engine Type

= Interpretation
= Compilation (Code-Gen)

e Execution Model

= |terator / \olcano
= Fully-Materialized

= Vectorization

* Pipeline Direction

= Pul
-  Push



Iterator/volcano model

[
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B st
L _&_l Join

O

‘ S.C > 1000

S |
Index Scan

Seq Scan

Each operator implements Next()
Emits an output tuple or NULL

The root operator implements a loop that
keeps invoking Next() on its child

Execution can be pipelined

Could have pipeline breakers
* E.g.,join, order by

Elegant implementation
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Iterator/volcano model
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Iterator/volcano model

Seq Scan Index Scan

Each operator implements Next()
Emits an output tuple or NULL

The root operator implements a loop that
keeps invoking Next() on its child

Execution can be pipelined

Could have pipeline breakers
* E.g.,join, order by

Elegant implementation



Iterator/volcano model

|7T : class AbstractExecutc
: RB.S.C | V}rtual void
——I ——————— ! virtual Tuple
_____ protected:
: M : Hash } L
| | i ’
- __&_l Join ’
= — |
I O- l * Everyoperator implements the same interface
I S.C > 1000 |
: ‘ : * QOperators may have internal states
""" 1 I
: I
L_FS__JL__S ________ -

Seqg Scan Index Scan



Fully-materialized model

| TT I * Eachoperator stores its output in a single
: \ buff d Il
I -IR'B’S'C : uffer and returns all at once
I i * Parent operator does not start until its
1 D4 1 Hash children finish
I 4+ _x_1Join
I'& _________ : * Non-pipelined
1 O ;
: ‘ S.C > 1000 |
_____ .| :
i 1
L_FS__JL__S ________ -

Seq Scan Index Scan
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Fully-materialized model

T : * Each operator stores its output in a single
R.B,S.C | buffer and returns all at once

[ ———— i * Parent operator does not start until its
g DX ?@Sh children finish
0]18

|
]
- _SSJ
o ) e e * Non-pipelined

Seq Scan Index Scan



Fully-materialized model

| TT I * Eachoperator stores its output in a single
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lterator vs. fully-materialized

Iterator / Volcano

Tuple at a time
Small intermediate results
A lot of virtual function calls

Can benefit from pipelining

Adopted by almost every
OLTP DBMS

Fully-Materialized

Operator at a time

Need extra memory for
intermediate results

Fewer function calls

Can benefit from batch
processing (e.g, SIMD)

A few DBMSs (e.g.,
monetDB, VoltDB)
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Iterator / Volcano
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‘ Small intermediate results ‘

A lot of virtual function calls

‘ Can benefit from pipelining

Adopted by almost every
OLTP DBMS

Fully-Materialized

Operator at a time

Need extra memory for
intermediate results

Fewer function calls

Can benefit from batch
processing (e.g, SIMD)

A few DBMSs (e.g.,
monetDB, VoltDB)




Vectorization model

Seq Scan

Index Scan

Every operator implements NextBatch( )

- Emits a batch of tuples

Can use SIMD instructions in operator’s
internal loop to accelerate processing

Much fewer function calls compared to
the iterator model

Ideal for OLAP

- Adopted by most interpreted OLAP
engines today



Pipeline direction

* Pull
- Parent operator “pulls” data up from its children JIA
- Ma function calls such as Next( ) R.B, S.C
- Most common way, easier to understand and implement ‘

X

 Push
= Child operator “pushes” data to its parent \
- Similar to producer-consumer model

Easier to “fuse” operations so that data stays in
CPU register as long as possible

)
‘ S.C > 1000
S



Pipeline direction

/
- Pull -\
- Parent operator “pulls” data up from its children - JIA \
- Ma function calls such as Next( ) \ R.B, S.C \
- Most common way, easier to understand and implement \ ‘
X \
 Push \
= Child operator “pushes” data to its parent / / \
- Similar to producer-consumer model O
| | | / / S.C>1000\
- Easier to “fuse” operations so that data stays in \ ‘
CPU register as long as possible / R / S - -~
~ \ -

Pipeline 1 Pipeline 2



Pipeline direction

Control Flow —»
Data Flow ---& Push Engine

”/’—_———‘__\\‘
scanFile(T" < cnnsu Iem} cnnaum&{elem} cnnaunﬂ lem)
- SELECT SUM(R.B)

FROM R
@ SG . T[ > Z ) WHERE R.A < 10
EmnFlw\!ﬂ{}

7’
rd
elem=next()

-

Elem_ne:r.t{}

Pull Engine



Snowflake architecture L
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Cloud services: the brain

l Query

] I

| Optimizer |
VW VW
H HBE H B

Metadata Service

r— — —

——

—_—

L

‘ Transa

ction
Manager

Optimizer

Cascade-style

Scan set pruning

db
X snowflake



Pruning and re-clustering

How to avoid full table scan?

C1 C2 C3

Table File



Pruning and re-clustering

How to avoid full table scan?

Zone Map

C1: min, max, ndy, ...
C2: min, max, ndy, ...

C3: min, max, ndy, ...

File level metadata

C1 C2 C3

Table File

Cached in Metadata
Service

Prune at compile and
run time

But it only works with data locality

select count(*) from TBL where C1 >’S’

B
C1 ZHBR PQYA CGXT

Reclustering
A H G R T Z
AB C H GP Q R TXY Z

Keep data “mostly” sorted

Automatic, incremental in the background



Cloud services: the brain

Metadata Service

oo o [T
| Optimizer | T I

——
| & &
—_—— —5—
% |_ — — ]
Serialized ‘ Transaction \
Physical Plan Manager
VW VW

db
X snowflake

 Optimizer

Cascade-style

Scan set pruning

e Metadata Service

- Stand-alone FoundationDB cluster for
low latency accesses

- Info needed for query compilation

- Catalog, Stats
- Lock status, version info

- Zone maps

 Multi-Version Concurrency Control
(Snapshot Isolation)



Snowflake architecture summary

* Disaggregated compute and storage

* |Immutable hybrid columnar files in object storage

* Virtual warehouses provide elasticity and performance isolation

* Vectorized push-based execution engine

* Ephemeral storage system for caching intermediate results and persistent files
* Multi-tenant, always-on cloud services

 Separate fast metadata store

 (Cascades-style optimizer, zone maps for scan pruning



Data lakes and warehouses: outline

 Data lakes and warehouses

e Case studies
 Snowflake
* Other offerings



Google BigQuery

* Originated from the Google Dremel project

First database system with disaggregated compute and

storage In-situ data processing —> data lake

Become commercial product BigQuery in 2012

* Serverless scalable analysis

On-demand pricing & capacity-based pricing
Columnar storage (Capacitor) similar to Parquet & ORC

Vectorized engine

In-memory shuffle service

Google
BigQuery



In-memory shuffle service . Google
@ BigQuery

In-memory values

Work
oreers ——n Local RAM Stage
—t 3 Workers Fault-Tolerance
3
= s |—» .
— ol Task| § Straggler Avoidance
— : —
el 3 Dynamic Resource
=i 8 Allocation
—H —
lel | -,
— & = Performance Overhead
=" ;‘, Local Disk




Amazon Redshift .

Amazon Redshift

Node

Compute
Nodes )

F==—======"7

I \ﬂUA Nodes | | Spectrum Nodes |
V1 |

I i %y Parquet
: @ @ @ @ : @ s “ |  OpenFormats
L

Redshift Managed Storage Amazon S3

Auto-Scaling Clusters




Amazon Redshift features .

Amazon Redshift

* Code-Gen (C++) plan fragments

* Compilation Service
- Compiled-plan cache with 99.95% hit ratio

* Performance Optimizations

- Min-max pruning
- SIMD scan from local
- SSDs AZ64 encoding



The dual-tier data architecture

Repository for storing large amounts of structured, semi-structured, and
unstructured data without having to define a schema or ingest the data into
proprietary internal formats.

 Extract operational data from siloed data sources for writing into landing zones (/raw).
* Read, clean, and transform the data from /raw and write the changes to /cleansed.
* Read from /cleansed (could do additional joining and normalization) before writing out the warehouse.

Sources Datalake Data warehouse

f Data ]
kDatabase]-D[path/to/raw/x path/to/deansed/x]d- -b[database.tabie.xJ
( Data Ingress A
| REST APIHpath/to/mw/y path/to/deansed/y](- agpp -}[database.table.y‘
f Data |
| Kafka ]—D[path/to/raw/z path/to/cleansed/zJT -T[database.tabie.zJ

Complex staging, redundant storage and less efficient




Lakehouse

* Acombination of data warehouse and data lake for better flexibility, low
cost, and ACID transactions.

* No need to copy data to data lake and warehouse separately.
* Saves cost of infrastructure and staff.
* Scalability and resilience.

Structured & ETL |
Unstructured Data Metadata, Caching & Data Warehousing

Indexing Layer

it s Wkl WP

Data Lake Data Validation Reports, Bl & Data
Science



Lakehouse
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REPORT
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Data
Warehouse

Most enterprise data

Data Lake s~ .OFC NSNS A are here



Lakehouse

=
REPORT

Data
Warehouse

Data Freshness

High Cost

%y Parquet

Most enterprise data

are here



Lakehouse &
databricks

=

REPORT
u‘:r'

—

SQL Direct Access

Metadata & Performance Layer



Lakehouse performance optimization >
databricks

=» Zone-maps, indexes, ... stored as Delta tables

=» Caching hot data in SSD or DRAM

-» New vectorized engine: Photon

- Pull-based vectorized query processing

- Precompiled operator primitives

- Use position list rather than bitmap for late materialization

datclbrlcks %

Jdb
X snowflake




Delta Lake

* A combination of data warehouse
and data lake for better flexibility,
low cost, and ACID transactions.

* No need to copy data to data lake and
warehouse separately.

 Saves cost of infrastructure and staff.
e Scalability and resilience.

Q

BI

][

( A
Data warehouse

Data lake

'

Q

EE

Data warehouses

| - '
Data warehouses

Data lake

Data ||Machine
1w \ BI' || Reports || science || learning
< A %4 %

Reports

=

Structured data

.

/

Structured, semistructured,
and unstructured data

A

DELTA LAKE

Data lakehouse

|

Q

B

|

L[

*

=k
Data | Machine
Reports | science | leaming
FF 1

Metadata and governance layer

ETL

Data lake

EGE

Structured, semistructured,

and unstructured data

i




Streaming vs. batch processing

e Streaming processing: continuously processes data streaming, enabling instant insights and actions.

* Batch processing: deals with large volumes of data in chunks at scheduled intervals.

Streaming process

!—

e e e e e e e L e = == =]

s

Batch process

I|_|Illlllllll‘lh_|lIIIIIIIII‘IIIIIIIII

- .

Streaming processing optimizes for latency, while batch
processing optimizes for throughput.



Streaming vs. batch processing

e Streaming processing: continuously processes data streaming, enabling instant insights and actions.

* Batch processing: deals with large volumes of data in chunks at scheduled intervals.

DB change
data feeds

.

Clickstreams

|

f—\
e

Machineand

application logs

f—‘q

ju—

Application
events
! S p—

Mobile and

Message bus systems

(et )[cotnt 7 |

Google
Cloud

MSK Pub/Sub

Data

Amazon
Streams

Amazon e
Event
Hubs

|

loT data

\

Kinesis
Object stores

g Azure Data | | Google Cloud
[ Amazon S3 ] [Lake Storage Storage

33

Streaming
connectors

Delta Lake
lakehouse

Auto

|

loader

An example architecture diagram for stream processing
applications with a Delta Lake sink from Databricks.



Medallion architecture

DELTA LAKE
* Ascheme to progressively refine datasets in the lakehouse.
* Works for both batch or streaming sources.
* Bronze: as simple as possible. E.g., Json parsing.
* Silver: more complex preprocessing. E.g., text extraction from HTMLs.
* Gold: complex joins and aggregates, w/ external data.
Improve data quality >
Raw
— (% (" Brone ) [ Silver 1 ( Gold ) N @
aa BI
 SEEEE——
% Raw integration Filtered, Business-level | | | @
CleanSEd, aggregates
Streaming L L augmented J ) ML

.

o

-

J

y

“Landing zone" for
raw data; no schema
required

Define structure, enforce Deliver continuously updated,
schema, evolve schema  clean data to downstream
as needed users and apps



LIC]UId Clustering DELTA LAKE

SELECT * FROM sales_date Falat dats SELECT # FROM sales_date i G

region=East

2 =n e 1w = . . 2 =N N N delta_log
WHERE region="North": I:tm_mgé::::glmm WHERE region="North"; f t“’::ﬁ.i“a T

ereanerener e, region=North — TS _—
P ] |_g part-98883. snappy . parquet Sy 3 v part-88881.snappy . parquet
(1} E L L_ region=sauth |; ) . i part-88082. snappy . parquet
N Q"‘e-rY E“S""'F- 7 L— part-eee6d. snappy . parquet N > Qucr"f Enﬁme, E part-88883.snappy . parquet
; H L— region=West i i part-08684. snappy . parquat
Vsl L— part-e0005. snappy . parquet Mmoo

SELECT * FROM sales_date u:;;:::ia,t SELECT * FROM sales_date sales_data
WHERE year=2024; part-88881. snappy - parquet WHERE year=202u; delta_log
part-38602 . snappy . parquet y I 06EBBBSBRARBOBEBAE . json
TP RPTP miun:ﬂur‘th amERA L, _commits g
5 | '=. L et . et x j | SRl et
{ i L region=Sou ) i L part-68682. snappy . parque
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complete rewrite optimal data layout

required @ without rewrites 2"z
W

Hive-style partitioning on a
partitioning column. Liquid clustering automatically picks partitioning

columns based on query patterns.
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