
CS4221
Cloud Databases II. Data Lakes and Warehouses

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

Data lakes and warehouses: outline

• Data lakes and warehouses

• Case studies

• Snowflake

• Other offerings

Recall cloud systems

• Vendors provide database-as-a-service (DBaaS) offerings that are managed
DBMS environments.

• Newer systems are starting to blur the lines between shared-nothing
and shared-disk.
• Example: You can do simple filtering on Amazon S3 before copying data to

compute nodes.

Approach #1: Managed DBMSs
• No significant modification to the DBMS to be "aware" that it is running in

a cloud environment.
• Examples: Most vendors

Approach #2: Cloud-Native DBMS
• System designed explicitly to run in a cloud environment.
• Usually based on a shared-disk architecture.
• Examples: Snowflake, Google BigQuery

Recall cloud systems

Serverless databases

• Rather than always maintaining compute resources for each customer, a
"serverless" DBMS evicts tenants when they become idle.

Application
Server

Node

Serverless databases

• Rather than always maintaining compute resources for each customer, a
"serverless" DBMS evicts tenants when they become idle.

Application
Server

Node

Application
Server

Node

Storage

Serverless databases

• Rather than always maintaining compute resources for each customer, a
"serverless" DBMS evicts tenants when they become idle.

Serverless databases

• Rather than always maintaining compute resources for each customer, a
"serverless" DBMS evicts tenants when they become idle.

Application
Server

Node

Storage

Node

Storage
Buffer Pool
Page Table

Serverless databases

• Rather than always maintaining compute resources for each customer, a
"serverless" DBMS evicts tenants when they become idle.

Application
Server

Serverless databases

• Rather than always maintaining compute resources for each customer, a
"serverless" DBMS evicts tenants when they become idle.

Application
Server

Storage

Buffer Pool
Page Table

Serverless databases

• Rather than always maintaining compute resources for each customer, a
"serverless" DBMS evicts tenants when they become idle.

Node

Storage

Application
Server

Overbooking?

• Sell more than have.
Node

Storage

Application
Server

Node

Storage
Application

Server

Application
Server

?

Data warehouses

• A data management system that
stores current and historical data from
multiple sources in a business friendly
manner for easier insights and
reporting. Typically used for business
intelligence (BI).
• ACID transactions
• Management features (backup and

recovery controls, gated controls, etc.)
• Performance optimizations (indexes,

partitioning, etc.)
• Limited support for ML and unstructured

data.

https://www.future-processing.com/blog/top-8-data-warehouse-solutions/

• Repository for storing large amounts of
structured, semi-structured, and
unstructured data without having to define a
schema or ingest the data into proprietary
internal formats.

Storage

Node

CREATE TABLE foo (...) ;

Data lakes

Storage

Node

INSERT INTO foo VALUES (...) ;

CREATE TABLE foo (...) ;• Repository for storing large amounts of
structured, semi-structured, and
unstructured data without having to define a
schema or ingest the data into proprietary
internal formats.

Data lakes

Storage

Node

INSERT INTO foo VALUES (...) ;

CREATE TABLE foo (...) ;• Repository for storing large amounts of
structured, semi-structured, and
unstructured data without having to define a
schema or ingest the data into proprietary
internal formats.

Data lakes

Storage

Node

SELECT * FROM foo
• Repository for storing large amounts of

structured, semi-structured, and
unstructured data without having to define a
schema or ingest the data into proprietary
internal formats.

Data lakes

Data Lake

Node

SELECT * FROM foo
• Repository for storing large amounts of

structured, semi-structured, and
unstructured data without having to define a
schema or ingest the data into proprietary
internal formats.

Data lakes

Data Lake

Node

SELECT * FROM foo
• Repository for storing large amounts of

structured, semi-structured, and
unstructured data without having to define a
schema or ingest the data into proprietary
internal formats.

Data lakes

Snowflake

• The Snowflake Elastic Data Warehouse

• Pure SaaS

-
-

T arget analytical queries to support business intelligence (BI)

Founded at 2012, growing fast, largest software IPO (2020) ever

-
-

Nothing to install, always on, always up-to-date

Ease of use, only pay for what you use

• Multi-Cloud Support

Snowflake architecture

Authentication & Access Control

Infrastructure

Manager
Optimizer

Transaction

Manager
Security

Metadata

VW 1

Cloud

Services

Virtual

Warehouses

VW 2 VW 3 VW 4

Data Storage

Amazon EC2

Amazon S3

Snowflake architecture

Authentication & Access Control

Infrastructure

Manager
Optimizer

Transaction

Manager
Security

Metadata

VW 1

Cloud

Services

Virtual

Warehouses

VW 2 VW 3 VW 4

Data Storage

Amazon EC2

Amazon S3

Recall from last lecture: storage models

Choice #1: N-ary Storage Model (NSM)
• This is for OLTP and what we learned before.

Choice #2: Decomposition Storage Model (DSM)
• This is for OLAP

Choice #3: Hybrid Storage Model (PAX)
• This is for HTAP (Hybrid Transactional and Analytical Processing) and OLAP workloads.

Table file format

Header

Column 1

Column 2

Column 3

Column 3 Heavily Compressed

Queries first read header

• T ables are horizontally partitioned
- Micro-partition: size = 10s MB, natural ingestion order

• Hybrid columnar (P AX) format

Snowflake architecture

Authentication & Access Control

Infrastructure

Manager
Optimizer

Transaction

Manager
Security

Metadata

VW 1

Cloud

Services

Virtual

Warehouses

VW 2 VW 3 VW 4

Data Storage

Amazon EC2

Amazon S3

Virtual warehouses: the muscle

Virtual Warehouse Create, destroy, resize on demand

Worker Node
EC2

Virtual warehouses: the muscle

Virtual Warehouse Create, destroy, resize on demand

• Performance Isolation

-

-
Shared data, private compute

T ypical usage pattern

-

-

Continuously-running VWs for repeating jobs

On-demand VWs for ad-hoc tasks

• Ephemeral worker processes

• Columnar, Vectorized, Push-Based

Worker Node
EC2

Execution engine design space

• Engine Type

• Execution Model
-
-
-

Iterator / Volcano

Fully-Materialized

V ectorization

• Pipeline Direction
-
-

Pull

Push

-
-

Interpretation
Compilation (Code-Gen)

Executing the plan

• Approach 1: Interpretation

• Approach 2: Compilation

Interpreter

Physical Plan
Read and translate

one line at a time
00100110 …

Pre-compiled
Operators

Code-Gen

C++

LLVM
IR

or

你好

我要⼀杯拿铁

双份浓缩咖啡

带⾛

谢谢

Interpreter

Aside: interpreting vs. compiling

• Complier: bring the pre-translated sheet

你好

我要⼀杯拿铁

双份浓缩咖啡

带⾛

谢谢

Interpreter

Hello

Aside: interpreting vs. compiling

• Complier: bring the pre-translated sheet

你好

我要⼀杯拿铁

双份浓缩咖啡

带⾛

谢谢

Interpreter

Pros
-
-
-

No need for code analysis beforehand
Easier to test and debug

Cross-platform

Cons
-
-

Need interpreters
Execution is often slower

Aside: interpreting vs. compiling

• Complier: bring the pre-translated sheet

• Complier: bring the pre-translated sheet

你好

我要⼀杯拿铁

双份浓缩咖啡

带⾛

谢谢

Compiler Hello, a
double-shot
Latte to go,
Thank you.

Hello, a
double-shot
Latte to go,
Thank you.

Pros
-
-

Faster, ready-to-run
Code better optimized

Cons
-
-
-
-

Long extra compile time
Requires more memory
Hard to get it right
Worse portability

Aside: interpreting vs. compiling

Execution engine design space

• Engine Type

• Execution Model
-
-
-

Iterator / Volcano

Fully-Materialized

V ectorization

• Pipeline Direction
-
-

Pull

Push

-
-

Interpretation
Compilation (Code-Gen)

Iterator/volcano model

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

• Each operator implements Next()
• Emits an output tuple or NULL

• The root operator implements a loop that
keeps invoking Next() on its child

• Execution can be pipelined

• Could have pipeline breakers
• E.g., join, order by

• Elegant implementation

Iterator/volcano model

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

• Each operator implements Next()
• Emits an output tuple or NULL

• The root operator implements a loop that
keeps invoking Next() on its child

• Execution can be pipelined

• Could have pipeline breakers
• E.g., join, order by

• Elegant implementation

Next()

Iterator/volcano model

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

• Each operator implements Next()
• Emits an output tuple or NULL

• The root operator implements a loop that
keeps invoking Next() on its child

• Execution can be pipelined

• Could have pipeline breakers
• E.g., join, order by

• Elegant implementation

Next()

Next()

Iterator/volcano model

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

• Each operator implements Next()
• Emits an output tuple or NULL

• The root operator implements a loop that
keeps invoking Next() on its child

• Execution can be pipelined

• Could have pipeline breakers
• E.g., join, order by

• Elegant implementation

Next()

Next()

Next()

Iterator/volcano model

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

• Each operator implements Next()
• Emits an output tuple or NULL

• The root operator implements a loop that
keeps invoking Next() on its child

• Execution can be pipelined

• Could have pipeline breakers
• E.g., join, order by

• Elegant implementation

Next()

Next()

Next()
…

Next()

Iterator/volcano model

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

• Each operator implements Next()
• Emits an output tuple or NULL

• The root operator implements a loop that
keeps invoking Next() on its child

• Execution can be pipelined

• Could have pipeline breakers
• E.g., join, order by

• Elegant implementation

Next()

Next()

Next()

• Every operator implements the same interface

• Operators may have internal states

Iterator/volcano model

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

Fully-materialized model

• Each operator stores its output in a single
buffer and returns all at once

• Parent operator does not start until its
children finish

• Non-pipelined

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

Fully-materialized model

• Each operator stores its output in a single
buffer and returns all at once

• Parent operator does not start until its
children finish

• Non-pipelined

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

Fully-materialized model

• Each operator stores its output in a single
buffer and returns all at once

• Parent operator does not start until its
children finish

• Non-pipelined

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

Fully-materialized model

• Each operator stores its output in a single
buffer and returns all at once

• Parent operator does not start until its
children finish

• Non-pipelined

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

Fully-materialized model

• Each operator stores its output in a single
buffer and returns all at once

• Parent operator does not start until its
children finish

• Non-pipelined

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

Fully-materialized model

• Each operator stores its output in a single
buffer and returns all at once

• Parent operator does not start until its
children finish

• Non-pipelined

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

Fully-materialized model

• Each operator stores its output in a single
buffer and returns all at once

• Parent operator does not start until its
children finish

• Non-pipelined

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

Fully-materialized model

• Each operator stores its output in a single
buffer and returns all at once

• Parent operator does not start until its
children finish

• Non-pipelined

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

Iterator vs. fully-materialized

Iterator / Volcano Fully-Materialized

Tuple at a time Operator at a time

Need extra memory for
intermediate results

Fewer function calls

Can benefit from batch
processing (e.g, SIMD)

A lot of virtual function calls

Small intermediate results

Can benefit from pipelining

Adopted by almost every
OLTP DBMS

A few DBMSs (e.g.,
monetDB, VoltDB)

Iterator vs. fully-materialized

Iterator / Volcano Fully-Materialized

Tuple at a time Operator at a time

Need extra memory for
intermediate results

Fewer function calls

Can benefit from batch
processing (e.g, SIMD)

A lot of virtual function calls

Small intermediate results

Can benefit from pipelining

Adopted by almost every
OLTP DBMS

A few DBMSs (e.g.,
monetDB, VoltDB)

• Every operator implements NextBatch()
 Emits a batch of tuples

• Can use SIMD instructions in operator’s
internal loop to accelerate processing

• Much fewer function calls compared to
the iterator model

Index ScanSeq Scan

-

Vectorization model

• Ideal for OLAP
- Adopted by most interpreted OLAP
engines today

R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Hash

Join

Pipeline direction

• Pull

-

-

-

Parent operator “pulls” data up from its children

Via function calls such as Next()

Most common way, easier to understand and implement

• Push

-

-

-

Child operator “pushes” data to its parent

Similar to producer-consumer model

Easier to “fuse” operations so that data stays in

CPU register as long as possible
R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Pipeline 1 Pipeline 2

Pipeline direction

• Pull

-

-

-

Parent operator “pulls” data up from its children

Via function calls such as Next()

Most common way, easier to understand and implement

• Push

-

-

-

Child operator “pushes” data to its parent

Similar to producer-consumer model

Easier to “fuse” operations so that data stays in

CPU register as long as possible
R S

⋈

S.C > 1000

R.B, S.C
𝜋

𝜎

Pipeline direction

Snowflake architecture

Authentication & Access Control

Infrastructure

Manager
Optimizer

Transaction

Manager
Security

Metadata

VW 1

Cloud

Services

Virtual

Warehouses

VW 2 VW 3 VW 4

Data Storage

Amazon EC2

Amazon S3

Cloud services: the brain

Optimizer

Metadata Service

Transaction

Manager

VW VW

• Optimizer
-
-

Cascade-style

Scan set pruning

Query

Pruning and re-clustering

C1 C2 C3

T able File

How to avoid full table scan?

Pruning and re-clustering

C1 C2 C3

T able File

How to avoid full table scan?

Zone Map
C1: min, max, ndv, …
C2: min, max, ndv, …
C3: min, max, ndv, …
File level metadata

Cached in Metadata
Service

Prune at compile and
run time

But it only works with data locality

select count(*) from TBL where C1 > ’S’

B Z A Y C X
Z H B R P Q Y A C G X T

Reclustering
A H G

A B C H G P Q R T X Y Z
R T Z

C1

C1

Keep data “mostly” sorted

Automatic, incremental in the background

Cloud services: the brain

Optimizer

Metadata Service

Transaction

Manager

VW VW

• Optimizer
-
-

Cascade-style

Scan set pruning

Query

• Metadata Service

- Stand-alone FoundationDB cluster for
low latency accesses

Info needed for query compilation-
-
-
-

Catalog, Stats
Lock status, version info
Zone maps

Catalog,

Stats …

• Multi-Version Concurrency Control
(Snapshot Isolation)

Serialized

Physical Plan

Snowflake architecture summary

• Disaggregated compute and storage

• Immutable hybrid columnar files in object storage

• Virtual warehouses provide elasticity and performance isolation

• Vectorized push-based execution engine

• Ephemeral storage system for caching intermediate results and persistent files

• Multi-tenant, always-on cloud services

• Separate fast metadata store

• Cascades-style optimizer, zone maps for scan pruning

Data lakes and warehouses: outline

• Data lakes and warehouses

• Case studies

• Snowflake

• Other offerings

Google BigQuery

• Originated from the Google Dremel project

-
-
-

First database system with disaggregated compute and

storage In-situ data processing data lake

Become commercial product BigQuery in 2012

• Serverless scalable analysis

-
-
-
-

On-demand pricing & capacity-based pricing

Columnar storage (Capacitor) similar to Parquet & ORC

Vectorized engine

In-memory shuffle service

In-memory shuffle service

Stage

Task

Fault-Tolerance

Straggler Avoidance

Dynamic Resource
Allocation

Performance Overhead

Amazon Redshift

Leader

Node

Compute

Nodes

Pre-2020

Auto-Scaling Clusters

Spectrum NodesAQUA Nodes

Open Formats

Redshift Managed Storage Amazon S3

Amazon Redshift features

• Code-Gen (C++) plan fragments

• Compilation Service
 - Compiled-plan cache with 99.95% hit ratio

• Performance Optimizations

-
-
-

Min-max pruning
SIMD scan from local

SSDs AZ64 encoding

…

• Repository for storing large amounts of structured, semi-structured, and
unstructured data without having to define a schema or ingest the data into
proprietary internal formats.

• Extract operational data from siloed data sources for writing into landing zones (/raw).
• Read, clean, and transform the data from /raw and write the changes to /cleansed.
• Read from /cleansed (could do additional joining and normalization) before writing out the warehouse.

• Complex staging, redundant storage and less efficient

The dual-tier data architecture

Lakehouse

• A combination of data warehouse and data lake for better flexibility, low
cost, and ACID transactions.
• No need to copy data to data lake and warehouse separately.
• Saves cost of infrastructure and staff.
• Scalability and resilience.

Lakehouse

Data

Warehouse

ETL

Most enterprise data

are here
Data Lake

Lakehouse

Data

Warehouse

Data Freshness

High Cost

ETL

Most enterprise data

are here
Data Lake

Lakehouse

Metadata & Performance Layer

Data Lake

SQL Direct Access

Lakehouse performance optimization

Zone-maps, indexes, … stored as Delta tables

Caching hot data in SSD or DRAM

New vectorized engine: Photon

-

-

-

Pull-based vectorized query processing

Precompiled operator primitives

Use position list rather than bitmap for late materialization

Delta Lake

• A combination of data warehouse
and data lake for better flexibility,
low cost, and ACID transactions.
• No need to copy data to data lake and

warehouse separately.
• Saves cost of infrastructure and staff.
• Scalability and resilience.

Streaming vs. batch processing

• Streaming processing: continuously processes data streaming, enabling instant insights and actions.

• Batch processing: deals with large volumes of data in chunks at scheduled intervals.

Streaming processing optimizes for latency, while batch
processing optimizes for throughput.

Streaming vs. batch processing

• Streaming processing: continuously processes data streaming, enabling instant insights and actions.

• Batch processing: deals with large volumes of data in chunks at scheduled intervals.

An example architecture diagram for stream processing
applications with a Delta Lake sink from Databricks.

Medallion architecture

• A scheme to progressively refine datasets in the lakehouse.
• Works for both batch or streaming sources.
• Bronze: as simple as possible. E.g., Json parsing.
• Silver: more complex preprocessing. E.g., text extraction from HTMLs.
• Gold: complex joins and aggregates, w/ external data.

Liquid clustering

https://delta.io/blog/liquid-clustering/

Hive-style partitioning on a
partitioning column. Liquid clustering automatically picks partitioning

columns based on query patterns.

Data lakes and warehouses: outline

• Data lakes and warehouses

• Case studies

• Snowflake

• Other offerings

Credits and references

• Denny Lee et al. Delta Lake: The Definitive Guide.

• Andy Pavlo, CMU

• Dixin Tang, UT Austin

• Huanchen Zhang, Tsinghua

	Slide 1: CS4221 Cloud Databases II. Data Lakes and Warehouses
	Slide 2: Data lakes and warehouses: outline
	Slide 3: Recall cloud systems
	Slide 4: Recall cloud systems
	Slide 5: Serverless databases
	Slide 6: Serverless databases
	Slide 7: Serverless databases
	Slide 8: Serverless databases
	Slide 9: Serverless databases
	Slide 10: Serverless databases
	Slide 11: Serverless databases
	Slide 12: Overbooking?
	Slide 13: Data warehouses
	Slide 14: Data lakes
	Slide 15: Data lakes
	Slide 16: Data lakes
	Slide 17: Data lakes
	Slide 18: Data lakes
	Slide 19: Data lakes
	Slide 20: Snowflake
	Slide 21: Snowflake architecture
	Slide 22: Snowflake architecture
	Slide 23: Recall from last lecture: storage models
	Slide 24: Table file format
	Slide 25: Snowflake architecture
	Slide 26: Virtual warehouses: the muscle
	Slide 27: Virtual warehouses: the muscle
	Slide 28: Execution engine design space
	Slide 29: Executing the plan
	Slide 30: Aside: interpreting vs. compiling
	Slide 31: Aside: interpreting vs. compiling
	Slide 32: Aside: interpreting vs. compiling
	Slide 33: Aside: interpreting vs. compiling
	Slide 34: Execution engine design space
	Slide 35: Iterator/volcano model
	Slide 36: Iterator/volcano model
	Slide 37: Iterator/volcano model
	Slide 38: Iterator/volcano model
	Slide 39: Iterator/volcano model
	Slide 40: Iterator/volcano model
	Slide 41: Iterator/volcano model
	Slide 42: Fully-materialized model
	Slide 43: Fully-materialized model
	Slide 44: Fully-materialized model
	Slide 45: Fully-materialized model
	Slide 46: Fully-materialized model
	Slide 47: Fully-materialized model
	Slide 48: Fully-materialized model
	Slide 49: Fully-materialized model
	Slide 50: Iterator vs. fully-materialized
	Slide 51: Iterator vs. fully-materialized
	Slide 52: Vectorization model
	Slide 53: Pipeline direction
	Slide 54: Pipeline direction
	Slide 55: Pipeline direction
	Slide 56: Snowflake architecture
	Slide 57: Cloud services: the brain
	Slide 58: Pruning and re-clustering
	Slide 59: Pruning and re-clustering
	Slide 60: Cloud services: the brain
	Slide 61: Snowflake architecture summary
	Slide 62: Data lakes and warehouses: outline
	Slide 63: Google BigQuery
	Slide 64: In-memory shuffle service
	Slide 65: Amazon Redshift
	Slide 66: Amazon Redshift features
	Slide 67: The dual-tier data architecture
	Slide 68: Lakehouse
	Slide 69: Lakehouse
	Slide 70: Lakehouse
	Slide 71: Lakehouse
	Slide 72: Lakehouse performance optimization
	Slide 73: Delta Lake
	Slide 74: Streaming vs. batch processing
	Slide 75: Streaming vs. batch processing
	Slide 76: Medallion architecture
	Slide 77: Liquid clustering
	Slide 78: Data lakes and warehouses: outline
	Slide 79: Credits and references

