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Data lakes and warehouses: outline

• Data lakes and warehouses

• Case studies

• Snowflake

• Other offerings



Recall cloud systems

• Vendors provide database-as-a-service (DBaaS) offerings that are managed 
DBMS environments.

• Newer systems are starting to blur the lines between shared-nothing 
and shared-disk.
• Example: You can do simple filtering on Amazon S3 before copying data to 

compute nodes.



Approach #1: Managed DBMSs
• No significant modification to the DBMS to be "aware" that it is running in 

a cloud environment.
• Examples: Most vendors

Approach #2: Cloud-Native DBMS
• System designed explicitly to run in a cloud environment.
• Usually based on a shared-disk architecture.
• Examples: Snowflake, Google BigQuery

Recall cloud systems



Serverless databases

• Rather than always maintaining compute resources for each customer, a 
"serverless" DBMS evicts tenants when they become idle.
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Overbooking? 

• Sell more than have. 
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Data warehouses

• A data management system that 
stores current and historical data from 
multiple sources in a business friendly 
manner for easier insights and 
reporting. Typically used for business 
intelligence (BI). 
• ACID transactions
• Management features (backup and 

recovery controls, gated controls, etc.) 
• Performance optimizations (indexes, 

partitioning, etc.)
• Limited support for ML and unstructured 

data. 

https://www.future-processing.com/blog/top-8-data-warehouse-solutions/



• Repository for storing large amounts of 
structured, semi-structured, and 
unstructured data without having to define a 
schema or ingest the data into proprietary 
internal formats.

Storage

Node

CREATE  TABLE  foo ( ...) ;

Data lakes
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Snowflake

• The Snowflake Elastic Data Warehouse

• Pure SaaS

-
-

T arget analytical queries to support business intelligence (BI)

Founded at 2012, growing fast, largest software IPO (2020) ever

-
-

Nothing to install, always on, always up-to-date

Ease of use, only pay for what you use

• Multi-Cloud Support
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Recall from last lecture: storage models

Choice #1: N-ary Storage Model (NSM)
• This is for OLTP and what we learned before.

Choice #2: Decomposition Storage Model (DSM)
• This is for OLAP

Choice #3: Hybrid Storage Model (PAX)
• This is for HTAP (Hybrid Transactional and Analytical Processing) and OLAP workloads.



Table file format

Header

Column 1

Column 2

Column 3

Column 3 Heavily Compressed

Queries first read header

• T ables are horizontally partitioned
- Micro-partition: size = 10s MB, natural ingestion order

• Hybrid columnar (P AX) format
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Virtual warehouses: the muscle

Virtual Warehouse    Create, destroy, resize on demand

Worker Node
EC2



Virtual warehouses: the muscle

Virtual Warehouse     Create, destroy, resize on demand

• Performance Isolation

-

-
Shared data, private compute

T ypical usage pattern

-

-

Continuously-running VWs for repeating jobs

On-demand VWs for ad-hoc tasks

• Ephemeral worker processes

• Columnar, Vectorized, Push-Based

Worker Node
EC2



Execution engine design space

• Engine Type

• Execution Model
-
-
-

Iterator / Volcano

Fully-Materialized

V ectorization

• Pipeline Direction
-
-

Pull 

Push

-
-

Interpretation
Compilation (Code-Gen)



Executing the plan

• Approach 1: Interpretation

• Approach 2: Compilation

Interpreter

Physical Plan
Read and translate

one line at a time
00100110 …

Pre-compiled
Operators

Code-Gen

C++

LLVM
IR

or



你好

我要⼀杯拿铁

双份浓缩咖啡

带⾛

谢谢

Interpreter

Aside: interpreting vs. compiling

• Complier: bring the pre-translated sheet
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你好

我要⼀杯拿铁

双份浓缩咖啡

带⾛

谢谢

Interpreter

Pros
-
-
-

No need for code analysis beforehand 
Easier to test and debug

Cross-platform

Cons
-
-

Need interpreters 
Execution is often slower

Aside: interpreting vs. compiling

• Complier: bring the pre-translated sheet



• Complier: bring the pre-translated sheet

你好

我要⼀杯拿铁

双份浓缩咖啡

带⾛

谢谢

Compiler Hello, a
double-shot
Latte to go,
Thank you.

Hello, a
double-shot
Latte to go,
Thank you.

Pros
-
-

Faster, ready-to-run
Code better optimized

Cons
-
-
-
-

Long extra compile time
Requires more memory
Hard to get it right
Worse portability

Aside: interpreting vs. compiling
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Iterator/volcano model

Index ScanSeq Scan

R S

⋈

S.C > 1000

R.B, S.C
𝜋 

𝜎 

Hash 

Join

• Each operator implements Next()
• Emits an output tuple or NULL

• The root operator implements a loop that 
keeps invoking Next() on its child

• Execution can be pipelined

• Could have pipeline breakers
• E.g., join, order by

• Elegant implementation
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• Every operator implements the same interface

• Operators may have internal states

Iterator/volcano model
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Fully-materialized model

• Each operator stores its output in a single 
buffer and returns all at once

• Parent operator does not start until its
children finish

• Non-pipelined
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Iterator vs. fully-materialized

Iterator / Volcano Fully-Materialized

Tuple at a time Operator at a time

Need extra memory for 
intermediate results

Fewer function calls

Can benefit from batch 
processing (e.g, SIMD)

A lot of virtual function calls

Small intermediate results

Can benefit from pipelining

Adopted by almost every 
OLTP DBMS

A few DBMSs (e.g., 
monetDB, VoltDB)
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• Every operator implements NextBatch( )
  Emits a batch of tuples

• Can use SIMD instructions in operator’s
internal loop to accelerate processing

• Much fewer function calls compared to
the iterator model

Index ScanSeq Scan

-

Vectorization model

• Ideal for OLAP
- Adopted by most interpreted OLAP
engines today

R S

⋈

S.C > 1000

R.B, S.C
𝜋 

𝜎 

Hash 

Join



Pipeline direction

• Pull

-

-

-

Parent operator “pulls” data up from its children

Via function calls such as Next( )

Most common way, easier to understand and implement

• Push

-

-

-

Child operator “pushes” data to its parent

Similar to producer-consumer model

Easier to “fuse” operations so that data stays in 

CPU register as long as possible
R S

⋈

S.C > 1000

R.B, S.C
𝜋 

𝜎 
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Snowflake architecture
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Cloud services: the brain

Optimizer

Metadata Service

Transaction

Manager

VW VW

• Optimizer
-
-

Cascade-style 

Scan set pruning

Query



Pruning and re-clustering

C1 C2 C3

T able File

How to avoid full table scan?



Pruning and re-clustering

C1 C2 C3

T able File

How to avoid full table scan?

Zone Map
C1: min, max, ndv, …
C2: min, max, ndv, …
C3: min, max, ndv, …
File level metadata

Cached in Metadata
Service

Prune at compile and
run time

But it only works with data locality

select count(*) from TBL where C1 > ’S’

B Z A Y C X
Z H B R P Q Y A C G X T

Reclustering
A H G

A B C H G P Q R T X Y Z
R T Z

C1

C1

Keep data “mostly” sorted

Automatic, incremental in the background



Cloud services: the brain

Optimizer

Metadata Service

Transaction

Manager

VW VW

• Optimizer
-
-

Cascade-style 

Scan set pruning

Query

• Metadata Service

- Stand-alone FoundationDB cluster for
low latency accesses

Info needed for query compilation-
-
-
-

Catalog, Stats
Lock status, version info
Zone maps

Catalog, 

Stats …

• Multi-Version Concurrency Control 
(Snapshot Isolation)

Serialized

Physical Plan



Snowflake architecture summary

• Disaggregated compute and storage

• Immutable hybrid columnar files in object storage

• Virtual warehouses provide elasticity and performance isolation 

• Vectorized push-based execution engine

• Ephemeral storage system for caching intermediate results and persistent files 

• Multi-tenant, always-on cloud services

• Separate fast metadata store

• Cascades-style optimizer, zone maps for scan pruning
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Google BigQuery

• Originated from the Google Dremel project

-
-
-

First database system with disaggregated compute and

storage In-situ data processing data lake

Become commercial product BigQuery in 2012

• Serverless scalable analysis

-
-
-
-

On-demand pricing & capacity-based pricing

Columnar storage (Capacitor) similar to Parquet & ORC 

Vectorized engine

In-memory shuffle service



In-memory shuffle service

Stage

Task

Fault-Tolerance

Straggler Avoidance

Dynamic Resource 
Allocation

Performance Overhead



Amazon Redshift

Leader 

Node

Compute 

Nodes

Pre-2020

Auto-Scaling Clusters

Spectrum NodesAQUA Nodes

Open Formats

Redshift Managed Storage Amazon S3



Amazon Redshift features

• Code-Gen (C++) plan fragments

• Compilation Service
     -  Compiled-plan cache with 99.95% hit ratio

• Performance Optimizations

-
-
-

Min-max pruning
SIMD scan from local 

SSDs AZ64 encoding

…



• Repository for storing large amounts of structured, semi-structured, and 
unstructured data without having to define a schema or ingest the data into 
proprietary internal formats.

• Extract operational data from siloed data sources for writing into landing zones (/raw). 
• Read, clean, and transform the data from /raw and write the changes to /cleansed. 
• Read from /cleansed (could do additional joining and normalization) before writing out the warehouse.

• Complex staging, redundant storage and less efficient

The dual-tier data architecture



Lakehouse

• A combination of data warehouse and data lake for better flexibility, low 
cost, and ACID transactions.
• No need to copy data to data lake and warehouse separately. 
• Saves cost of infrastructure and staff. 
• Scalability and resilience. 



Lakehouse

Data 

Warehouse

ETL

Most enterprise data 

are here
Data Lake



Lakehouse

Data 

Warehouse

Data Freshness

High Cost

ETL

Most enterprise data 

are here
Data Lake



Lakehouse

Metadata & Performance Layer

Data Lake

SQL Direct Access



Lakehouse performance optimization

Zone-maps, indexes, … stored as Delta tables

Caching hot data in SSD or DRAM 

New vectorized engine: Photon

-

-

-

Pull-based vectorized query processing 

Precompiled operator primitives

Use position list rather than bitmap for late materialization



Delta Lake

• A combination of data warehouse 
and data lake for better flexibility, 
low cost, and ACID transactions.
• No need to copy data to data lake and 

warehouse separately. 
• Saves cost of infrastructure and staff. 
• Scalability and resilience. 



Streaming vs. batch processing

• Streaming processing: continuously processes data streaming, enabling instant insights and actions.

• Batch processing: deals  with large volumes of data in chunks at scheduled intervals. 

Streaming processing optimizes for latency, while batch 
processing optimizes for throughput. 



Streaming vs. batch processing

• Streaming processing: continuously processes data streaming, enabling instant insights and actions.

• Batch processing: deals  with large volumes of data in chunks at scheduled intervals. 

An example architecture diagram for stream processing 
applications with a Delta Lake sink from Databricks. 



Medallion architecture

• A scheme to progressively refine datasets in the lakehouse. 
• Works for both batch or streaming sources. 
• Bronze: as simple as possible. E.g., Json parsing.
• Silver: more complex preprocessing. E.g., text extraction from HTMLs.
• Gold: complex joins and aggregates, w/ external data. 



Liquid clustering

https://delta.io/blog/liquid-clustering/

Hive-style partitioning on a 
partitioning column. Liquid clustering automatically picks partitioning 

columns based on query patterns. 
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Credits and references

• Denny Lee et al. Delta Lake: The Definitive Guide. 

• Andy Pavlo, CMU

• Dixin Tang, UT Austin

• Huanchen Zhang, Tsinghua
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