CS4221 Cloud Databases II. Data Lakes and Warehouses

Yao LU 2024 Semester 2

National University of Singapore School of Computing

Data lakes and warehouses: outline

- Data lakes and warehouses
- Case studies
 - Snowflake
 - Other offerings

Recall cloud systems

- Vendors provide database-as-a-service (DBaaS) offerings that are managed DBMS environments.
- Newer systems are starting to blur the lines between shared-nothing and shared-disk.
 - Example: You can do simple filtering on Amazon S3 before copying data to compute nodes.

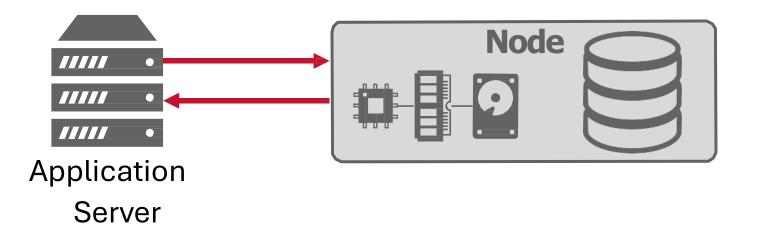
Recall cloud systems

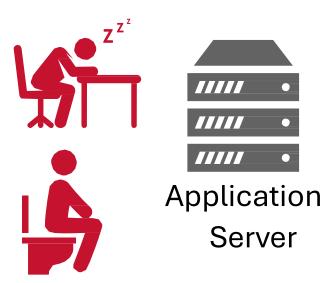
Approach #1: Managed DBMSs

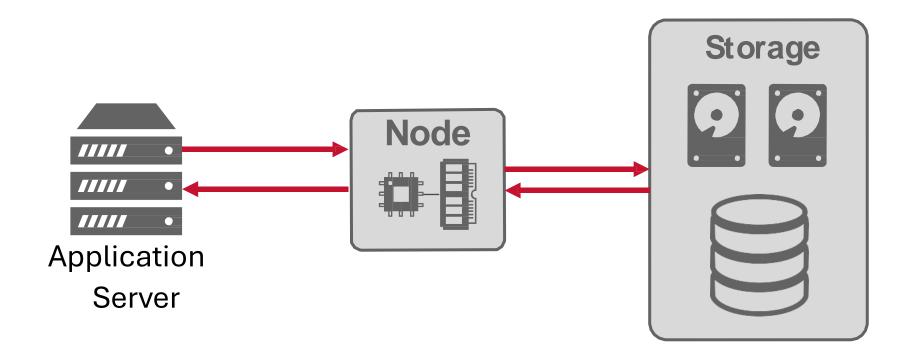
- No significant modification to the DBMS to be "aware" that it is running in a cloud environment.
- Examples: Most vendors

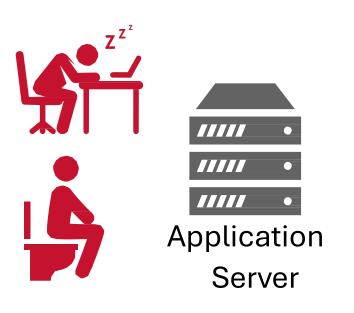
Approach #2: Cloud-Native DBMS

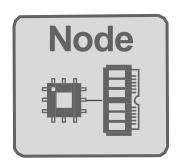
- System designed explicitly to run in a cloud environment.
- Usually based on a shared-disk architecture.
- Examples: Snowflake, Google BigQuery

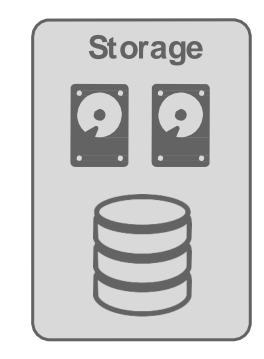


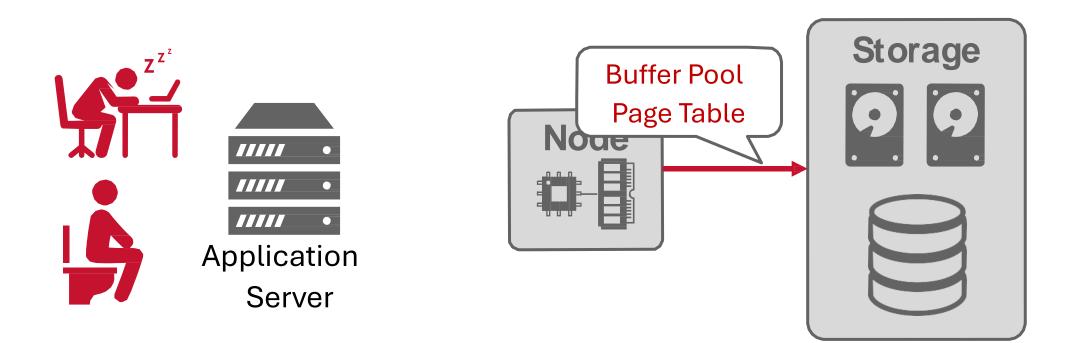


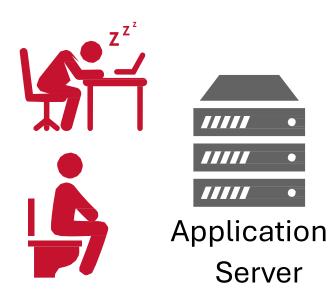


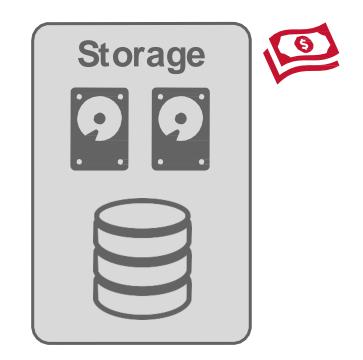


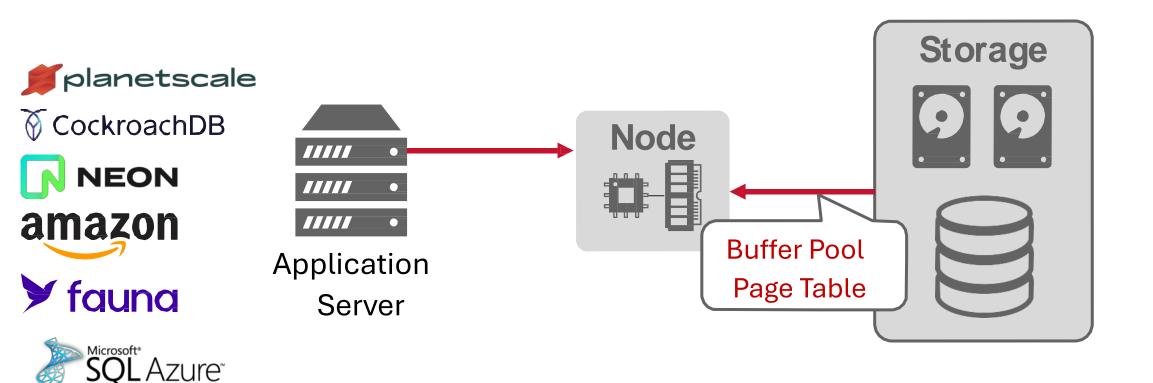






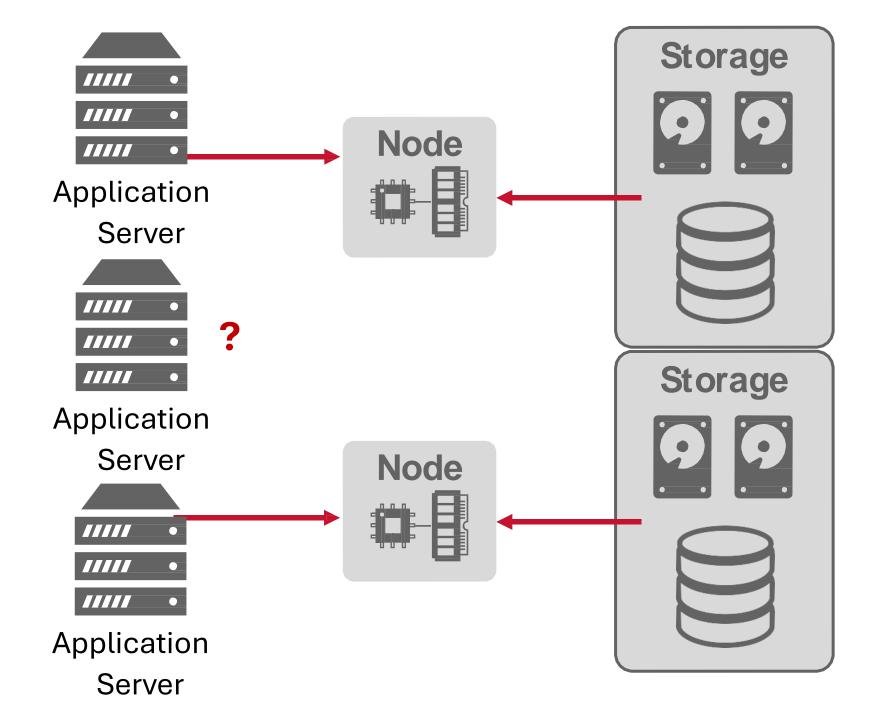






Overbooking?

• Sell more than have.

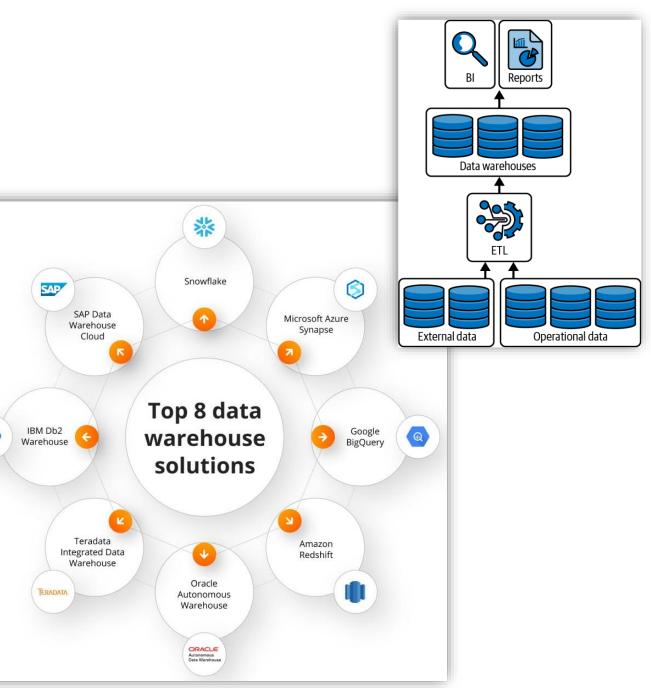


Data warehouses

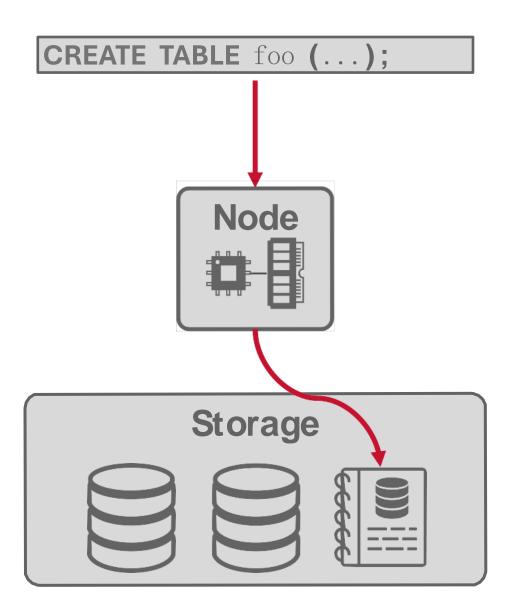
- A data management system that stores current and historical data from multiple sources in a business friendly manner for easier insights and reporting. Typically used for business intelligence (BI).
 - ACID transactions
 - Management features (backup and recovery controls, gated controls, etc.)

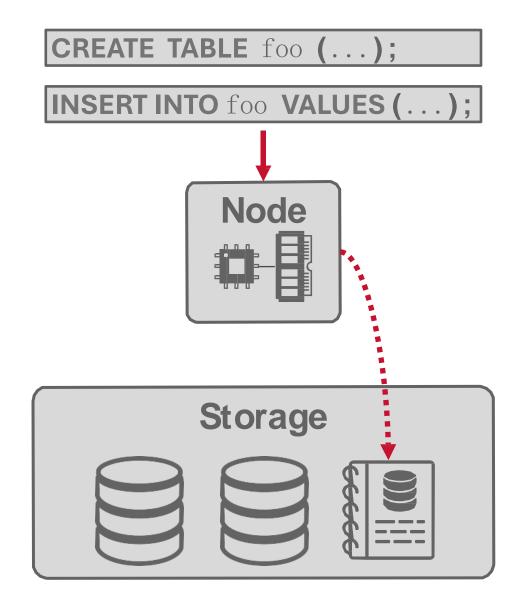
6

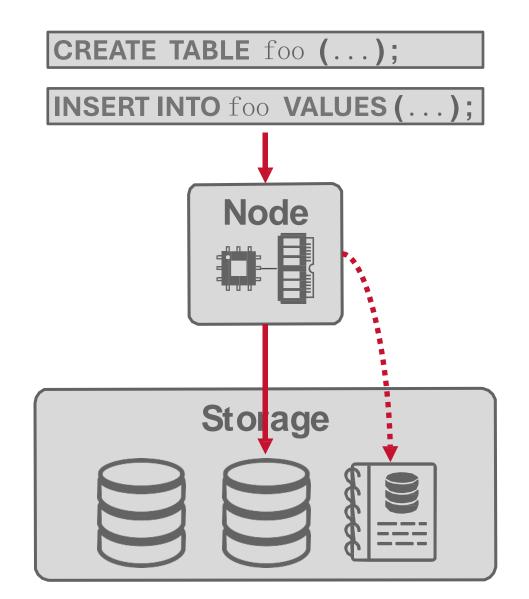
- Performance optimizations (indexes, partitioning, etc.)
- Limited support for ML and unstructured data.

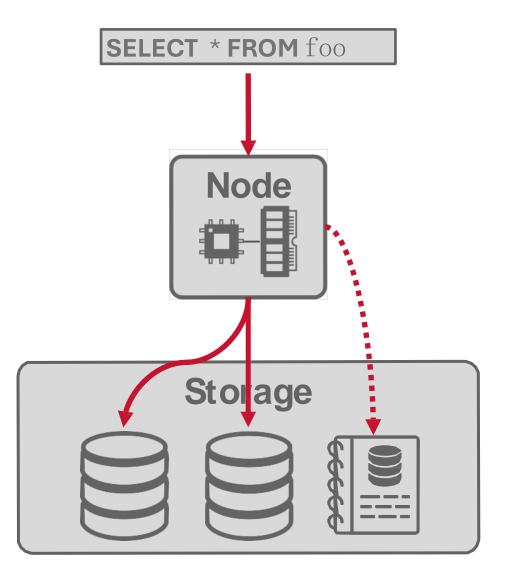


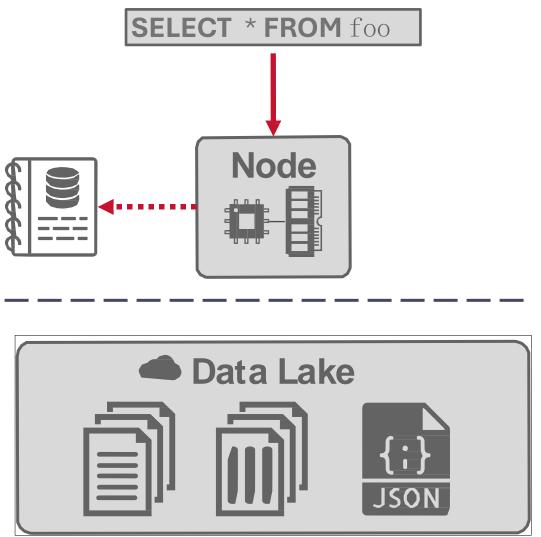
https://www.future-processing.com/blog/top-8-data-warehouse-solutions/











ど trino

databricks

• Repository for storing large amounts of structured, semi-structured, and unstructured data without having to define a schema or ingest the data into proprietary internal formats.

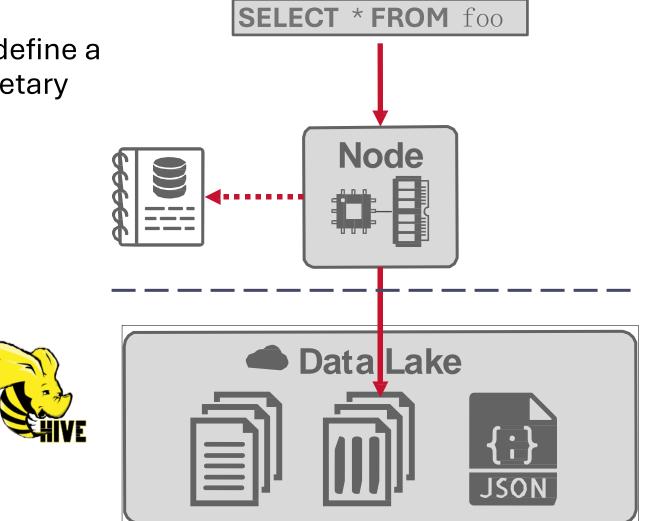
amazon REDSHIFT

snowflake

Google

Big Query

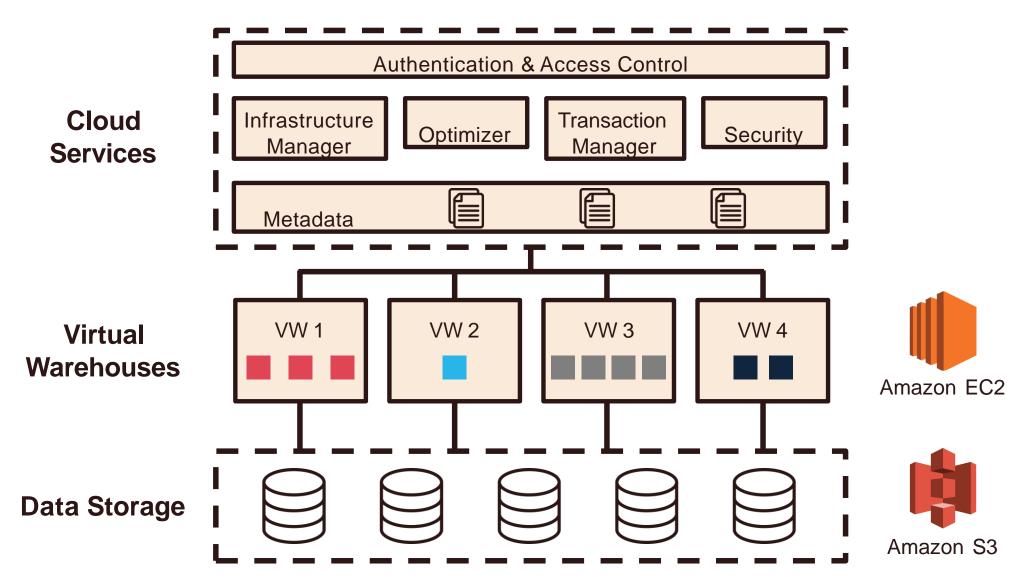
presto 🔅



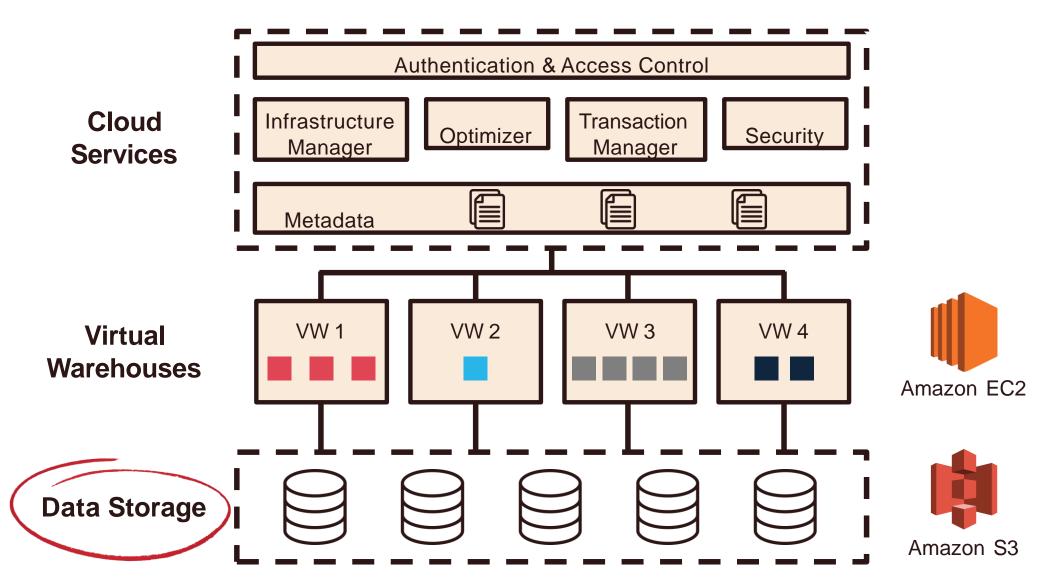
Snowflake

- The Snowflake Elastic Data Warehouse
 - Target analytical queries to support business intelligence (BI)
 - Founded at 2012, growing fast, largest software IPO (2020) ever
- Pure SaaS
 - Nothing to install, always on, always up-to-date
 - Ease of use, only pay for what you use
- Multi-Cloud Support

Snowflake architecture



Snowflake architecture



Recall from last lecture: storage models

Choice #1: N-ary Storage Model (NSM)

• This is for OLTP and what we learned before.

Choice #2: Decomposition Storage Model (DSM)

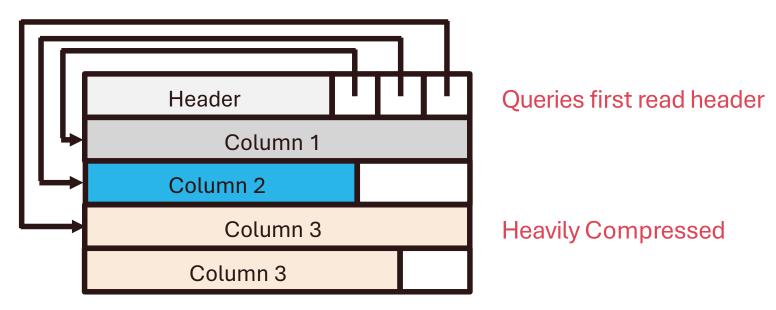
• This is for OLAP

Choice #3: Hybrid Storage Model (PAX)

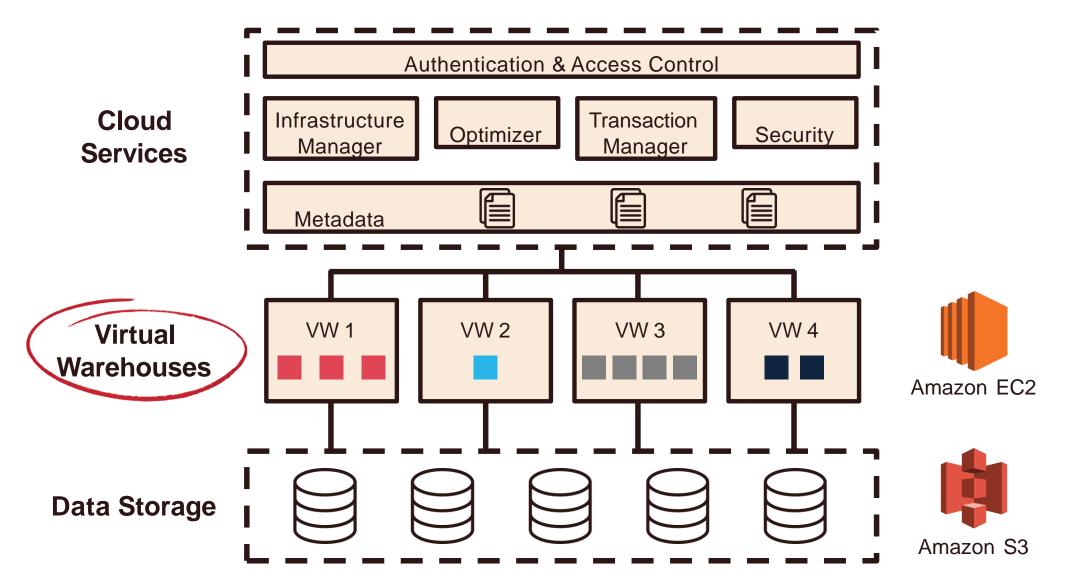
• This is for HTAP (Hybrid Transactional and Analytical Processing) and OLAP workloads.

Table file format

- Tables are horizontally partitioned
 - Micro-partition: size = 10s MB, natural ingestion order
- Hybrid columnar (PAX) format

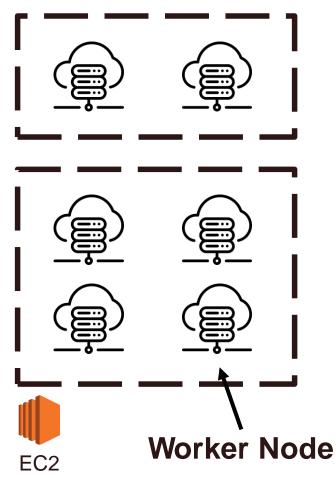


Snowflake architecture



Virtual warehouses: the muscle

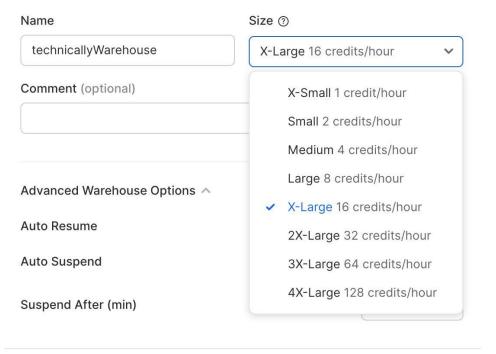
Virtual Warehouse



• Create, destroy, resize on demand

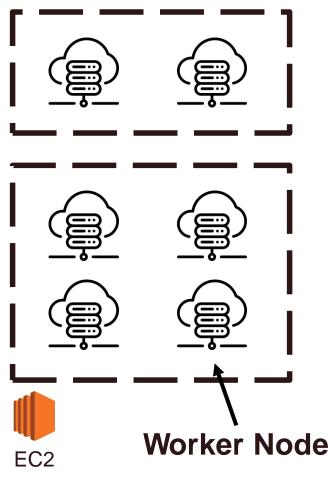
New Warehouse

Creating as 🛓 ACCOUNTADMIN



Virtual warehouses: the muscle

Virtual Warehouse



- Create, destroy, resize on demand
- Performance Isolation
- Shared data, private compute
- Typical usage pattern
 - Continuously-running VWs for repeating jobs
 - On-demand VWs for ad-hoc tasks
- Ephemeral worker processes
- Columnar, Vectorized, Push-Based

Execution engine design space

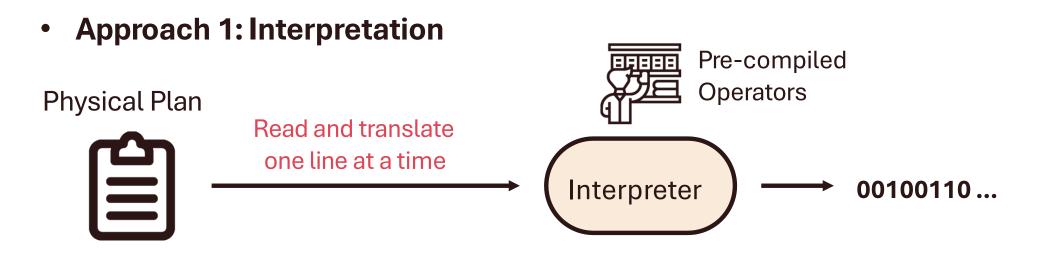
• Engine Type

- Interpretation
- Compilation (Code-Gen)

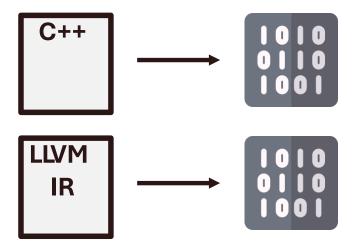
Execution Model

- Iterator / Volcano
- Fully-Materialized
- Vectorization
- Pipeline Direction
 - Pull
 - Push

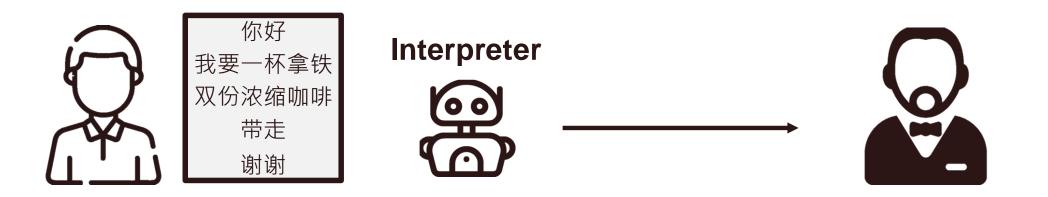
Executing the plan



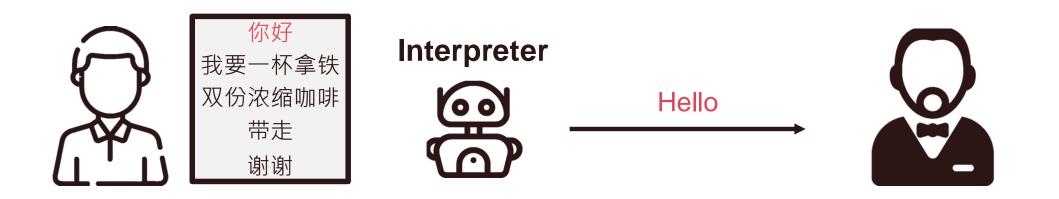
Approach 2: Compilation



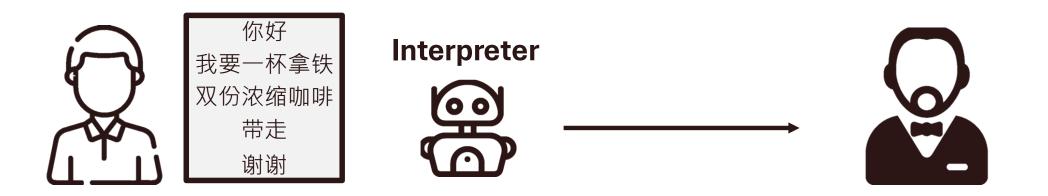
• Complier: bring the pre-translated sheet



• Complier: bring the pre-translated sheet



• Complier: bring the pre-translated sheet



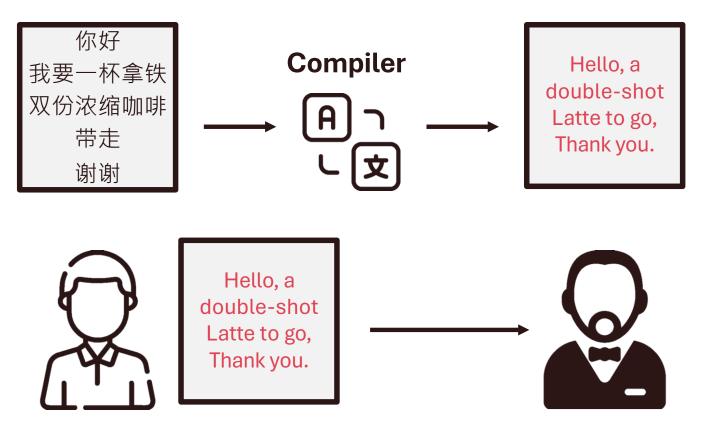
Pros

- No need for code analysis beforehand
- Easier to test and debug
- Cross-platform

Cons

- Need interpreters
- Execution is often slower

• **Complier**: bring the pre-translated sheet



Pros

- Faster, ready-to-run
- Code better optimized

Cons

- Long extra compile time
- Requires more memory
- Hard to get it right
- Worse portability

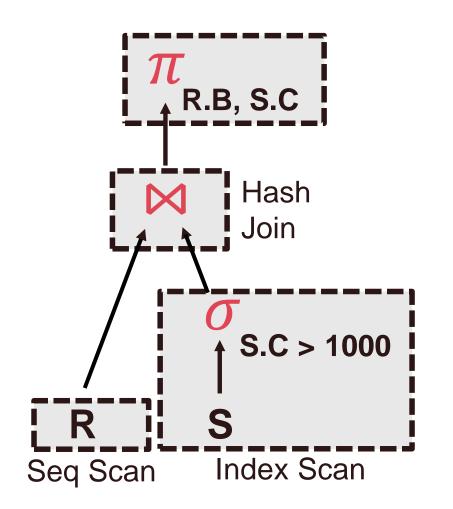
Execution engine design space

- Engine Type
 - Interpretation
 - Compilation (Code-Gen)

Execution Model

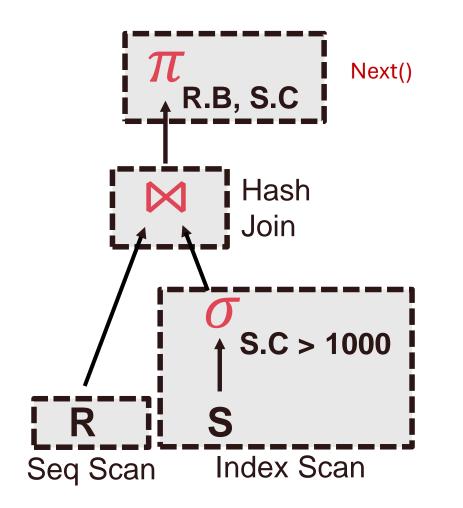
- Iterator / Volcano
- Fully-Materialized
- Vectorization
- Pipeline Direction
 - Pull
 - Push

Iterator/volcano model

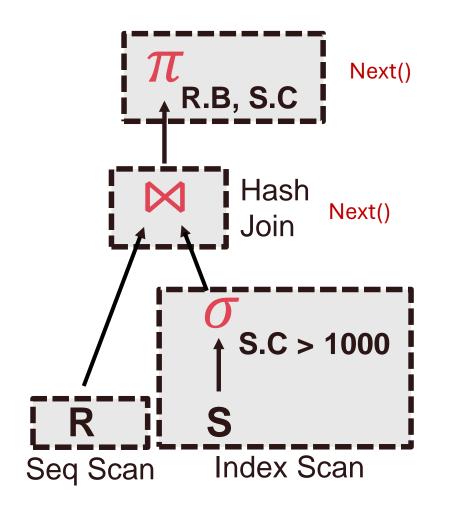


- Each operator implements Next()
 - Emits an output tuple or NULL
- The root operator implements a **loop** that keeps invoking **Next()** on its child
- Execution can be **pipelined**
- Could have pipeline breakers
 - E.g., join, order by
- Elegant implementation

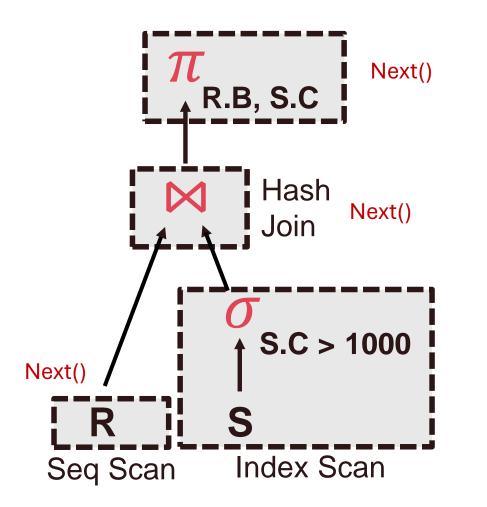
Iterator/volcano model



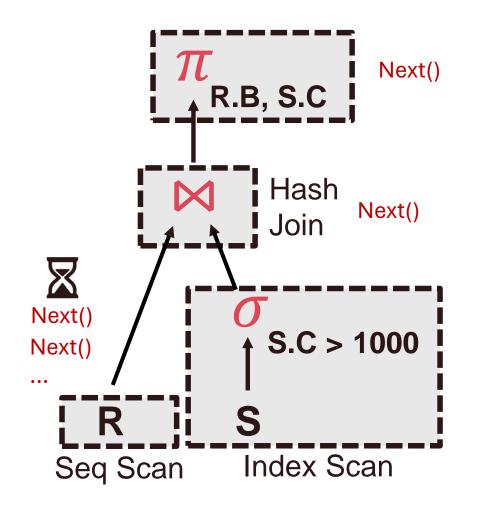
- Each operator implements Next()
 - Emits an output tuple or NULL
- The root operator implements a **loop** that keeps invoking **Next()** on its child
- Execution can be **pipelined**
- Could have pipeline breakers
 - E.g., join, order by
- Elegant implementation



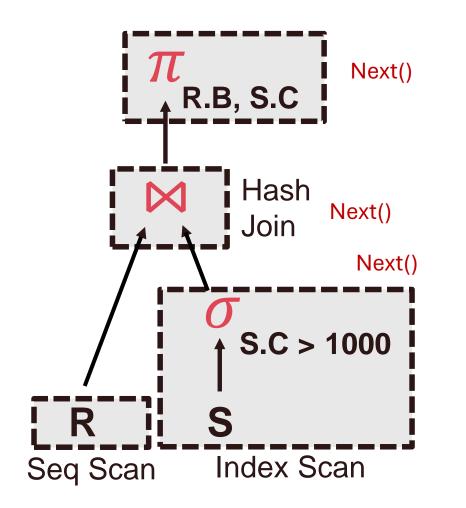
- Each operator implements Next()
 - Emits an output tuple or NULL
- The root operator implements a **loop** that keeps invoking **Next()** on its child
- Execution can be **pipelined**
- Could have pipeline breakers
 - E.g., join, order by
- Elegant implementation



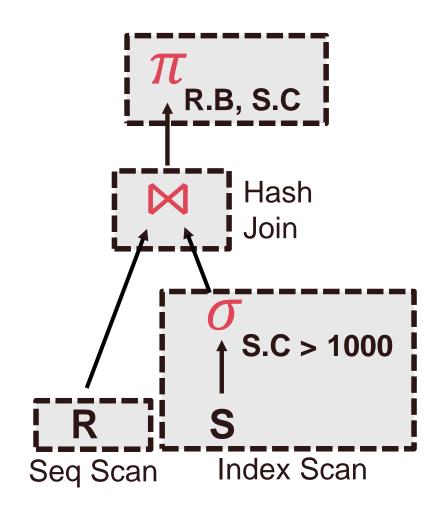
- Each operator implements Next()
 - Emits an output tuple or NULL
- The root operator implements a **loop** that keeps invoking **Next()** on its child
- Execution can be **pipelined**
- Could have pipeline breakers
 - E.g., join, order by
- Elegant implementation



- Each operator implements Next()
 - Emits an output tuple or NULL
- The root operator implements a **loop** that keeps invoking **Next()** on its child
- Execution can be **pipelined**
- Could have pipeline breakers
 - E.g., join, order by
- Elegant implementation

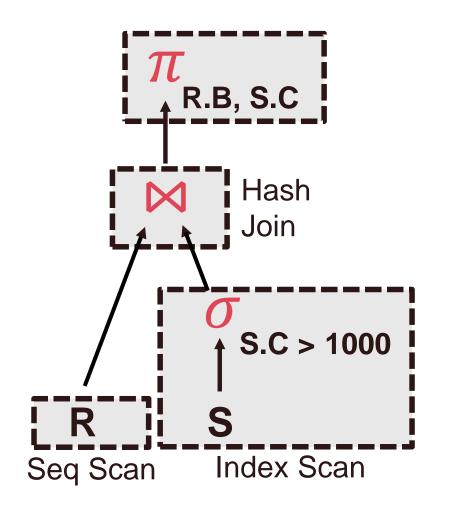


- Each operator implements Next()
 - Emits an output tuple or NULL
- The root operator implements a **loop** that keeps invoking **Next()** on its child
- Execution can be **pipelined**
- Could have pipeline breakers
 - E.g., join, order by
- Elegant implementation

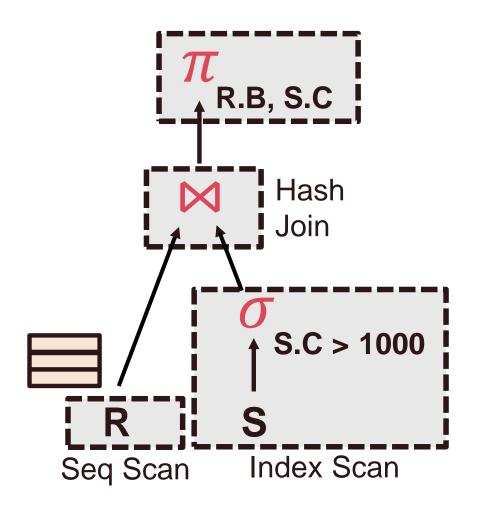


```
class AbstractExecutor {
    virtual void Init() = 0;
    virtual Tuple* Next() = 0;
protected:
    Context *ctx;
};
```

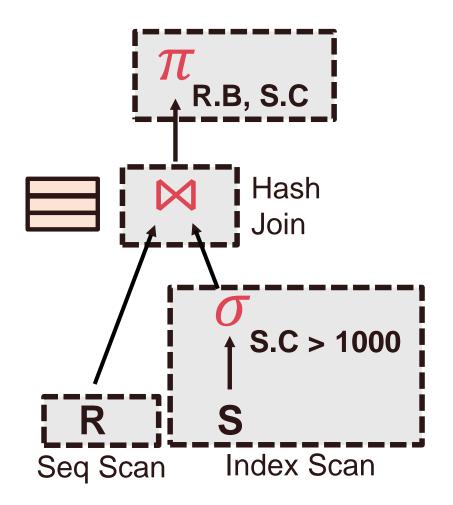
- Every operator implements the same interface
- Operators may have internal states



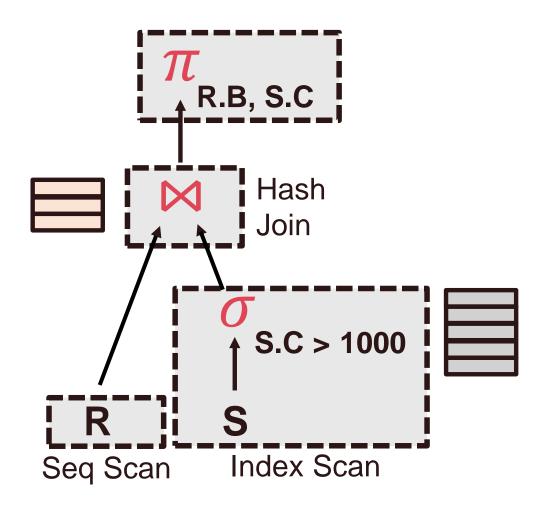
- Each operator stores its output in a single buffer and returns all at once
- Parent operator does not start until its children finish
- Non-pipelined



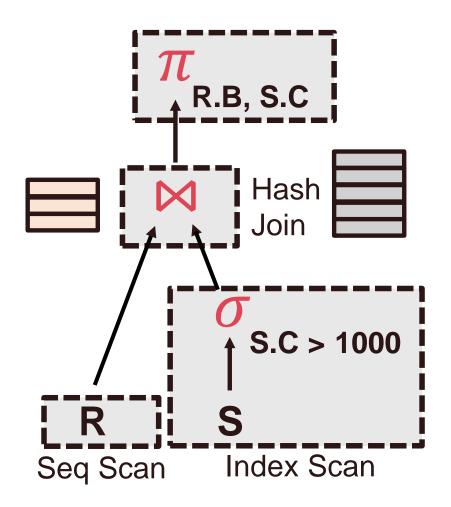
- Each operator stores its output in a single buffer and returns all at once
- Parent operator does not start until its children finish
- Non-pipelined



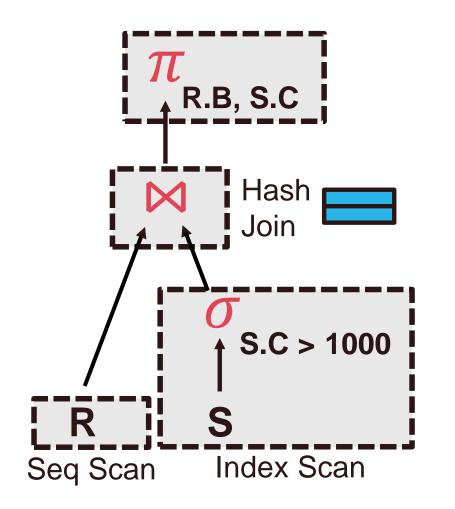
- Each operator stores its output in a single buffer and returns all at once
- Parent operator does not start until its children finish
- Non-pipelined



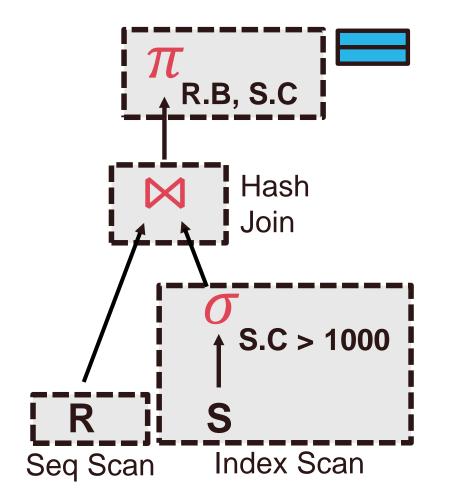
- Each operator stores its output in a single buffer and returns all at once
- Parent operator does not start until its children finish
- Non-pipelined



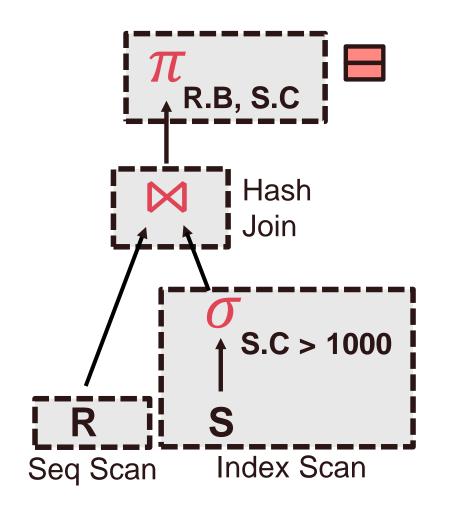
- Each operator stores its output in a single buffer and returns all at once
- Parent operator does not start until its children finish
- Non-pipelined



- Each operator stores its output in a single buffer and returns all at once
- Parent operator does not start until its children finish
- Non-pipelined



- Each operator stores its output in a single buffer and returns all at once
- Parent operator does not start until its children finish
- Non-pipelined



- Each operator stores its output in a single buffer and returns all at once
- Parent operator does not start until its children finish
- Non-pipelined

Iterator vs. fully-materialized

Iterator / Volcano

Tuple at a time

Small intermediate results

A lot of virtual function calls

Can benefit from pipelining

Adopted by almost every OLTP DBMS

Fully-Materialized

Operator at a time

Need extra memory for intermediate results

Fewer function calls

Can benefit from batch processing (e.g, SIMD)

A few DBMSs (e.g., monetDB, VoltDB)

Iterator vs. fully-materialized

Iterator / Volcano

Tuple at a time

Small intermediate results

A lot of virtual function calls

Can benefit from pipelining

Fully-Materialized

Operator at a time

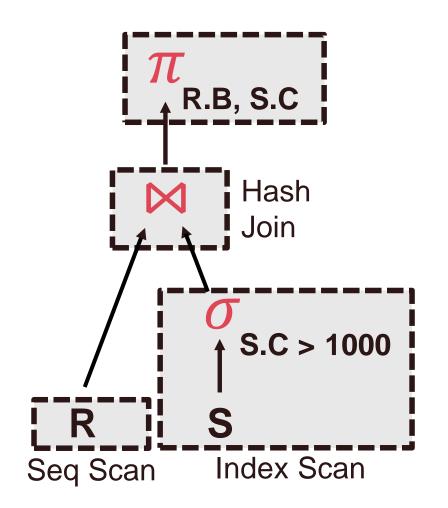
Need extra memory for intermediate results

Fewer function calls

Can benefit from batch processing (e.g, SIMD)

Adopted by almost every OLTP DBMS A few DBMSs (e.g., monetDB, VoltDB)

Vectorization model



- Every operator implements NextBatch()
 Emits a batch of tuples
- Can use SIMD instructions in operator's internal loop to accelerate processing
- Much fewer function calls compared to the iterator model
- Ideal for OLAP
 - Adopted by most interpreted OLAP engines today

Pipeline direction

• Pull

- Parent operator "pulls" data up from its children
- Via function calls such as Next()
- Most common way, easier to understand and implement

Push

- Child operator "pushes" data to its parent
- Similar to producer-consumer model
- Easier to "fuse" operations so that data stays in CPU register as long as possible



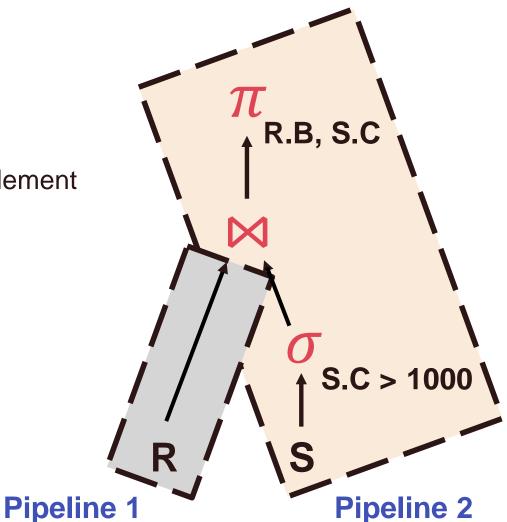
Pipeline direction

• Pull

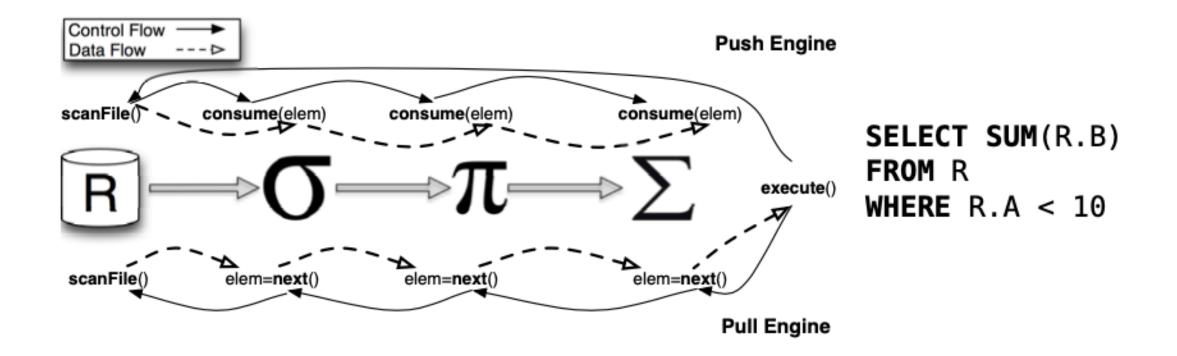
- Parent operator "pulls" data up from its children
- Via function calls such as Next()
- Most common way, easier to understand and implement

Push

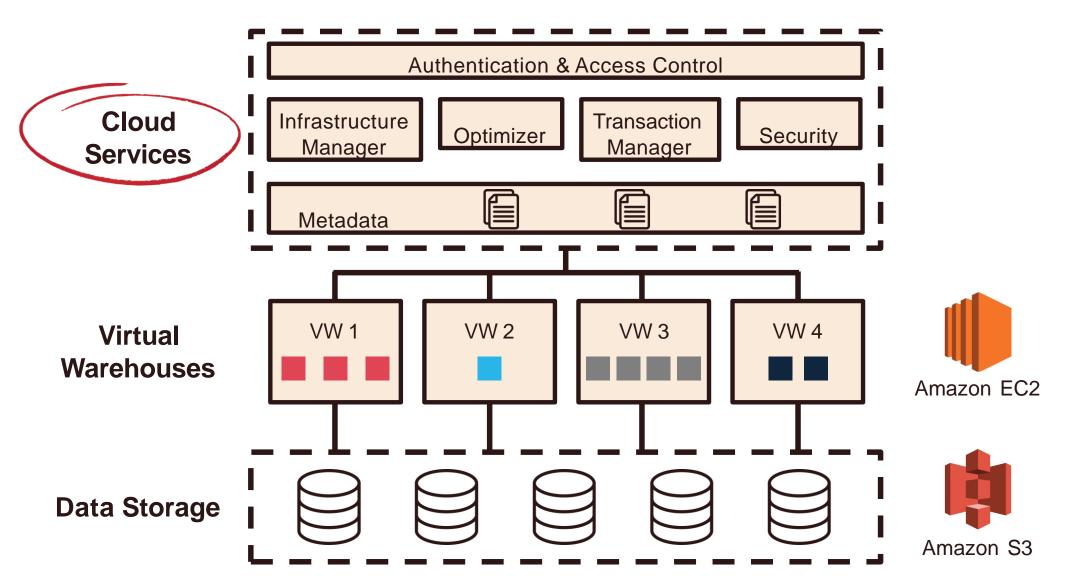
- Child operator "pushes" data to its parent
- Similar to producer-consumer model
- Easier to "fuse" operations so that data stays in CPU register as long as possible



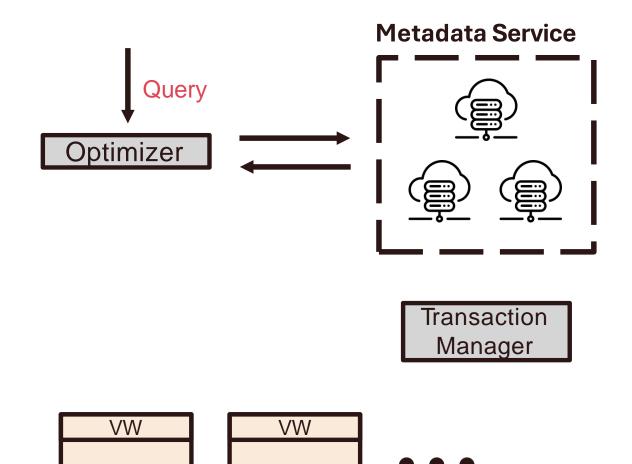
Pipeline direction



Snowflake architecture



Cloud services: the brain



- Optimizer
 - Cascade-style
 - Scan set **pruning**

Pruning and re-clustering

How to avoid full table scan?

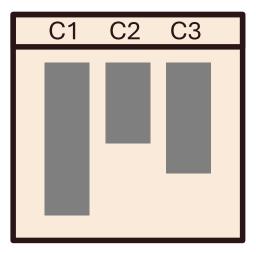


Table File

Pruning and re-clustering

How to avoid full table scan?

Zone Map

C1:	min,	max,	ndv,	•••
C2:	min,	max,	ndv,	•••
C3:	min,	max,	ndv,	•••
File level metadata				

Cached in Metadata Service

Prune at compile and run time

But it only works with data locality

select count(*) from TBL where C1 > 'S'

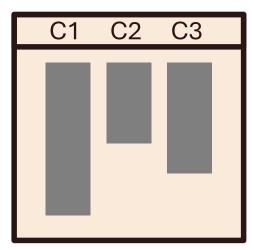
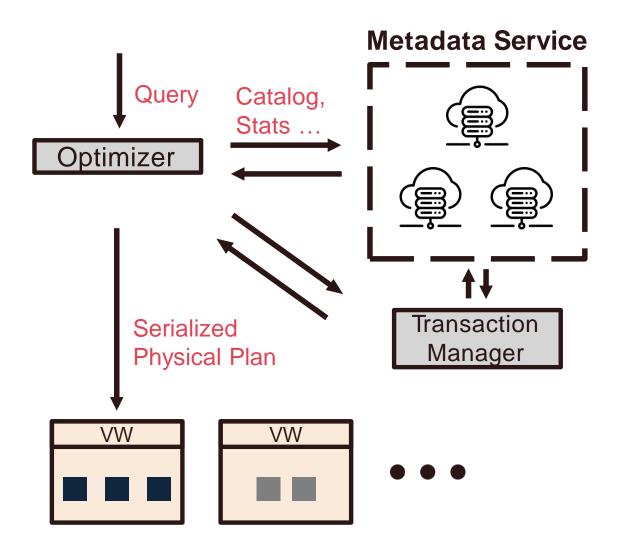


Table File

Reclustering

Keep data "mostly" sorted Automatic, incremental in the background

Cloud services: the brain



- Optimizer
 - Cascade-style
 - Scan set **pruning**
- Metadata Service
 - Stand-alone FoundationDB cluster for low latency accesses
 - Info needed for query compilation
 - Catalog, Stats
 - Lock status, version info
 - Zone maps
- Multi-Version Concurrency Control (Snapshot Isolation)

Snowflake architecture summary

- Disaggregated compute and storage
- Immutable hybrid columnar files in object storage
- Virtual warehouses provide elasticity and performance isolation
- Vectorized push-based execution engine
- Ephemeral storage system for caching intermediate results and persistent files
- Multi-tenant, always-on cloud services
- Separate fast metadata store
- Cascades-style optimizer, zone maps for scan pruning

Data lakes and warehouses: outline

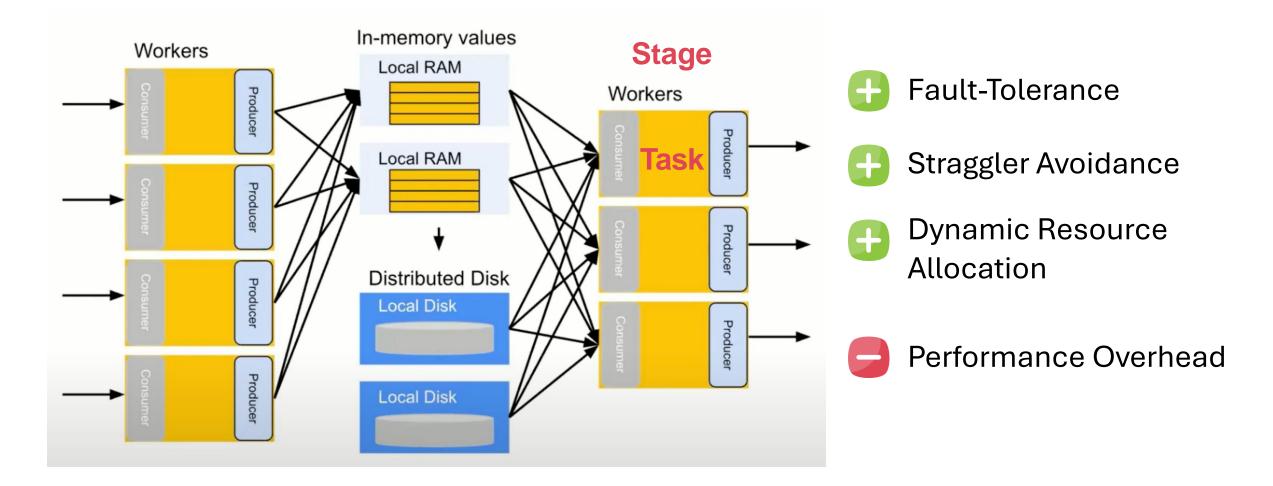
- Data lakes and warehouses
- Case studies
 - Snowflake
 - Other offerings

Google BigQuery

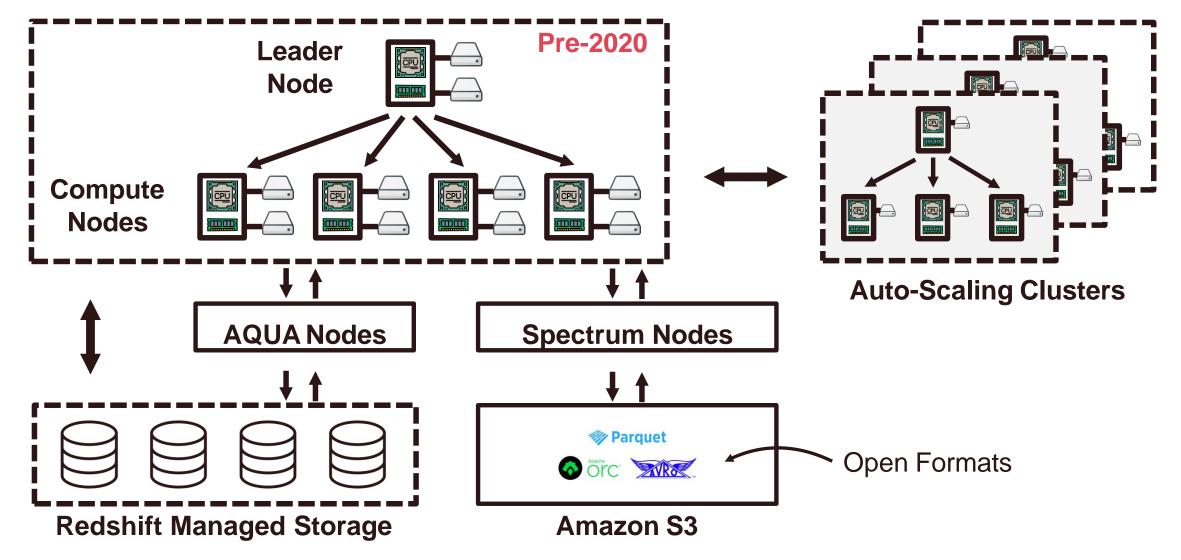
- Originated from the Google **Dremel** project
 - First database system with disaggregated compute and

 - Become commercial product BigQuery in 2012
- Serverless scalable analysis
 - On-demand pricing & capacity-based pricing
 - Columnar storage (Capacitor) similar to Parquet & ORC
 - Vectorized engine
 - In-memory shuffle service

In-memory shuffle service



Amazon Redshift



Amazon Redshift features

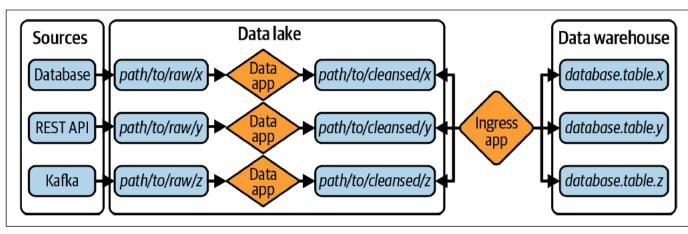
- Code-Gen (C++) plan fragments
- Compilation Service
 - Compiled-plan cache with 99.95% hit ratio
- Performance Optimizations
 - Min-max pruning

...

- SIMD scan from local
- SSDs AZ64 encoding

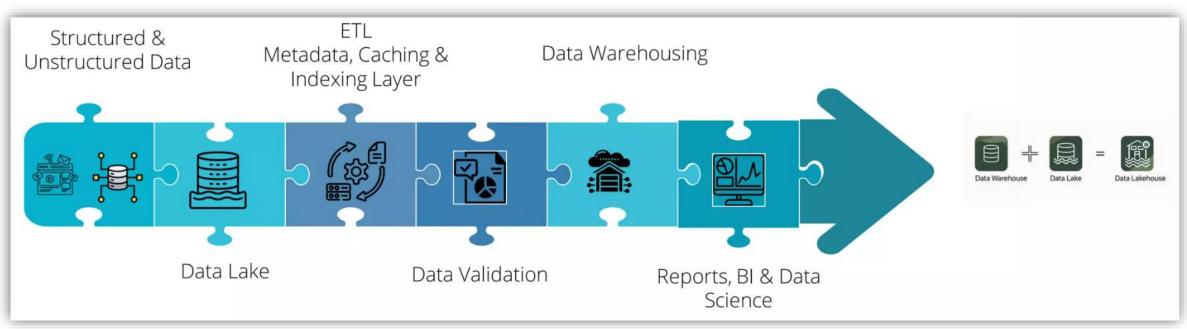
The dual-tier data architecture

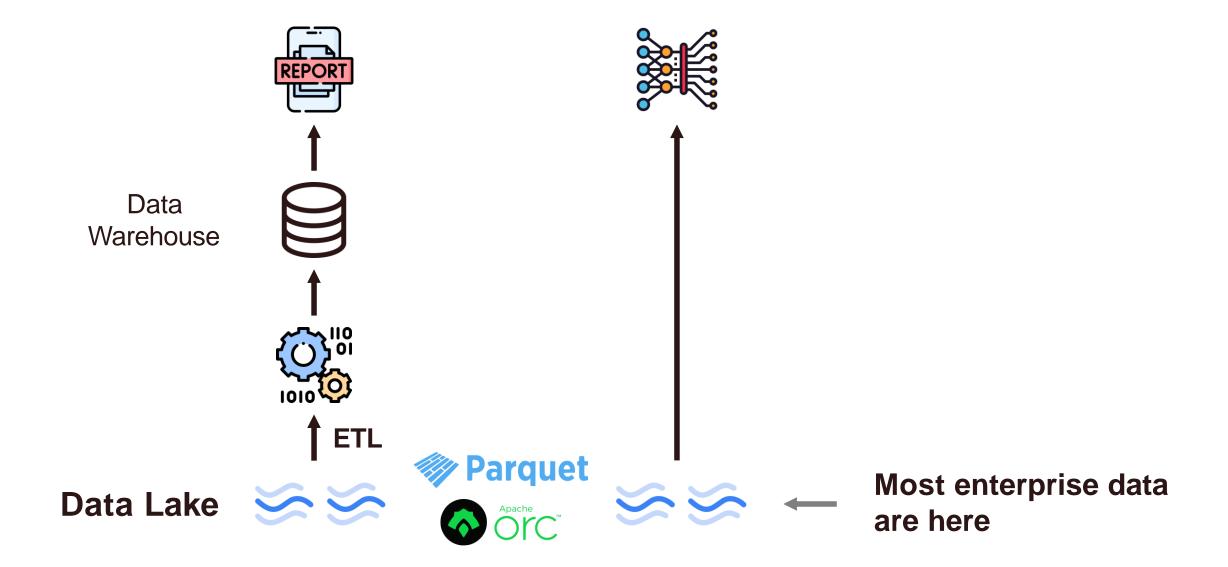
- Repository for storing large amounts of structured, semi-structured, and unstructured data without having to define a schema or ingest the data into proprietary internal formats.
 - Extract operational data from siloed data sources for writing into landing zones (/raw).
 - Read, clean, and transform the data from /raw and write the changes to /cleansed.
 - Read from /cleansed (could do additional joining and normalization) before writing out the warehouse.

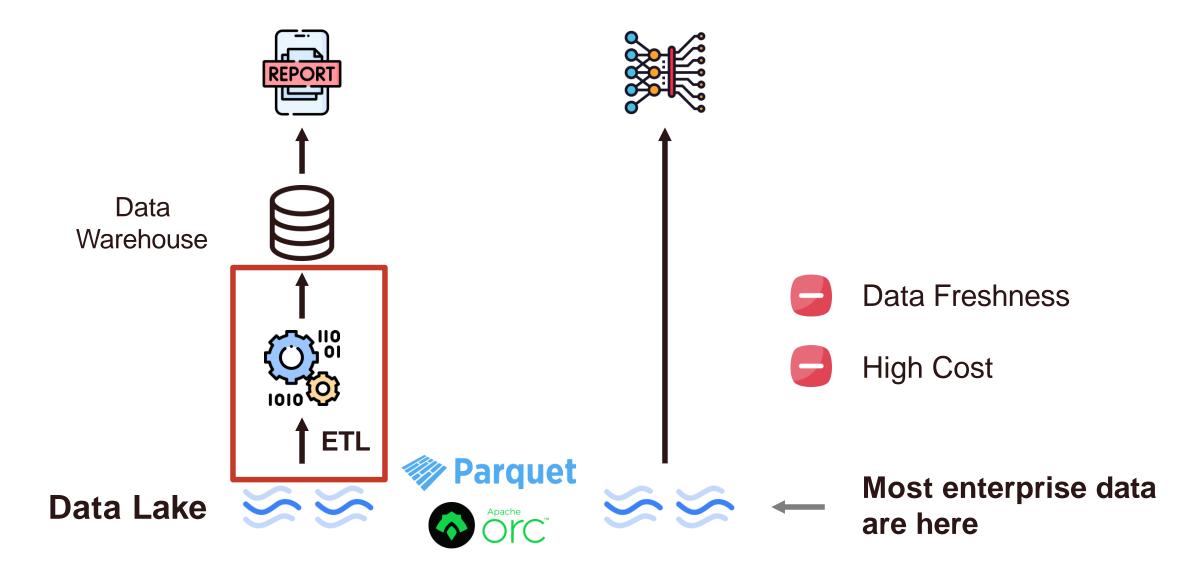


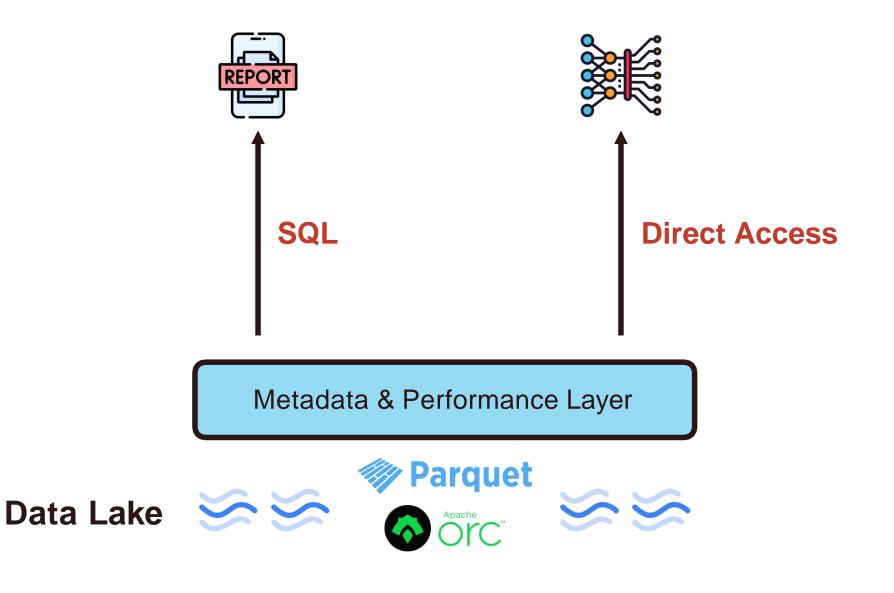
• Complex staging, redundant storage and less efficient

- A combination of data warehouse and data lake for better flexibility, low cost, and ACID transactions.
 - No need to copy data to data lake and warehouse separately.
 - Saves cost of infrastructure and staff.
 - Scalability and resilience.







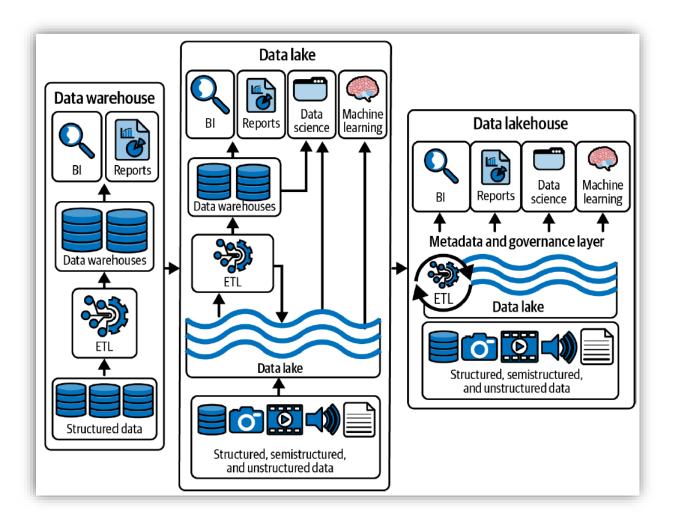


Lakehouse performance optimization

- → Zone-maps, indexes, ... stored as Delta tables
- Caching hot data in SSD or DRAM
- → New vectorized engine: **Photon**
 - Pull-based vectorized query processing
 - Precompiled operator primitives
 - Use position list rather than bitmap for late materialization

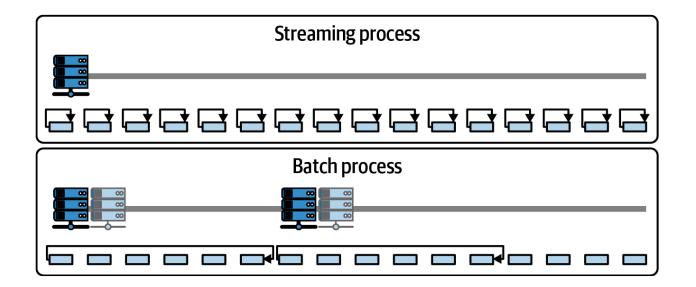
Delta Lake

- A combination of data warehouse and data lake for better flexibility, low cost, and ACID transactions.
 - No need to copy data to data lake and warehouse separately.
 - Saves cost of infrastructure and staff.
 - Scalability and resilience.



Streaming vs. batch processing

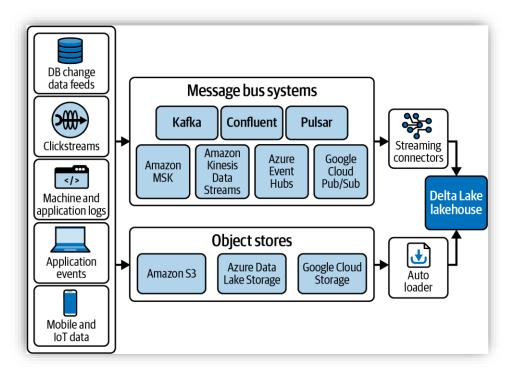
- **Streaming processing**: continuously processes data streaming, enabling instant insights and actions.
- Batch processing: deals with large volumes of data in chunks at scheduled intervals.



Streaming processing optimizes for **latency**, while batch processing optimizes for **throughput**.

Streaming vs. batch processing

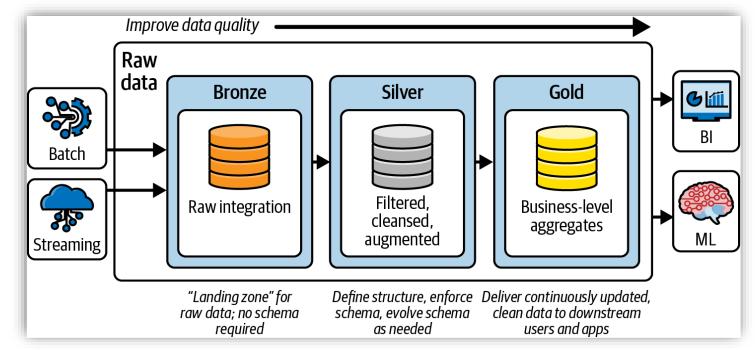
- Streaming processing: continuously processes data streaming, enabling instant insights and actions.
- Batch processing: deals with large volumes of data in chunks at scheduled intervals.



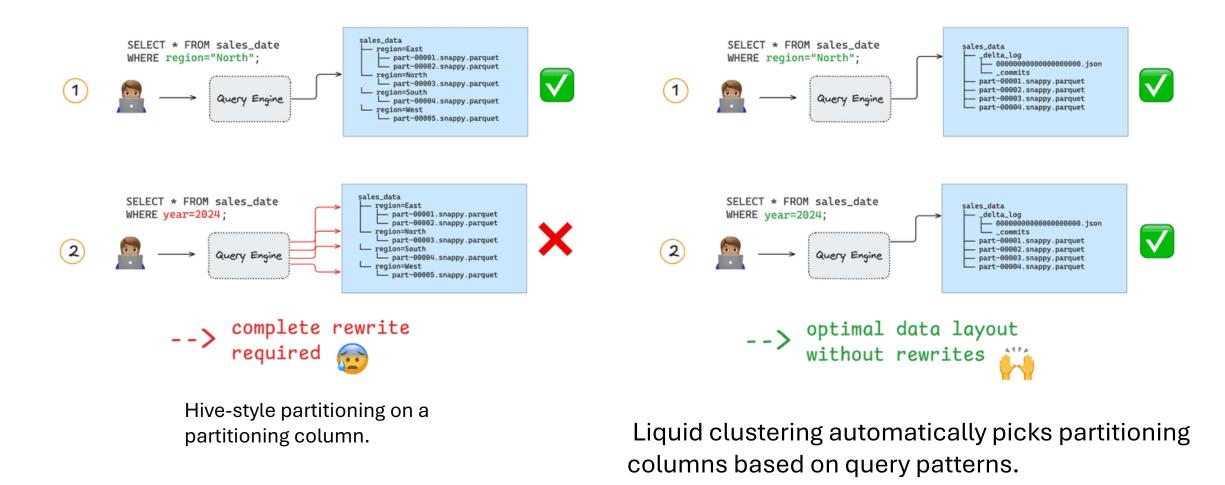
An example architecture diagram for stream processing applications with a Delta Lake sink from Databricks.

Medallion architecture

- A scheme to progressively refine datasets in the lakehouse.
 - Works for both batch or streaming sources.
 - Bronze: as simple as possible. E.g., Json parsing.
 - Silver: more complex preprocessing. E.g., text extraction from HTMLs.
 - Gold: complex joins and aggregates, w/ external data.



Liquid clustering



Data lakes and warehouses: outline

- Data lakes and warehouses
- Case studies
 - Snowflake
 - Other offerings

Credits and references

- Denny Lee et al. Delta Lake: The Definitive Guide.
- Andy Pavlo, CMU
- Dixin Tang, UT Austin
- Huanchen Zhang, Tsinghua