
CS4221 Tutorial 1: Relational Database Design
and PostgreSQL

Yao LU

2024 Semester 2

Objective

By the end of this tutorial, you will:

▶ Understand principles of relational database design and
normalization.

▶ Design and implement a database schema using PostgreSQL.

▶ Populate the database with sample data.

▶ Write SQL queries to retrieve, analyze, and manipulate data.

Prerequisites

Before starting, ensure you have:

▶ Python (preferred 3.9) installed.

▶ Jupyter Notebook installed.

▶ Basic understanding of SQL and Python.

Setting Up PostgreSQL

Step 1: Install PostgreSQL

▶ Download from https://www.postgresql.org/download/.

▶ Note down username, password, and port.

▶ Verify PostgreSQL is running.

Step 2: Create a Database

▶ Follow the guidelines in the Juypter Notebook to creat a table.

https://www.postgresql.org/download/

Introduction to Normalization

Example Context: Singgah Technologies
Singgah Technologies has been tasked with creating a payment
portal database that includes:

▶ Customers: Each customer is identified by a unique Social
Security Number (SSN). Additional attributes include first
name, last name, and country of residence.

▶ Credit Cards: Each credit card has a unique number, a type
(e.g., Visa, MasterCard), and is linked to a customer.

▶ Merchants: Merchants are identified by a unique code and
include attributes such as name and country.

▶ Transactions: Each transaction involves a credit card and a
merchant. It is recorded with an identifier, transaction date,
and amount.

Let’s design a schema to efficiently store and retrieve data related
to payments and transactions while adhering to relational database
principles.

First Normal Form (1NF)
What is 1NF?
▶ A table is in First Normal Form (1NF) if it meets the

following criteria:
▶ Each column contains atomic (indivisible) values.
▶ Each row is unique.
▶ There are no repeating groups or arrays within a column.

▶ The goal of 1NF is to ensure that the data is stored in a clear
and organized manner, avoiding redundancy and anomalies.

Non-1NF Table:

Social Security Number Name Credit Cards

S123456789 Alice Tan Visa:1234, Master:5678
S987654321 Bob Lim Visa:2345

Issues with Non-1NF:

▶ The Credit Cards column contains multiple values, violating
the atomicity requirement.

▶ Querying specific credit card details becomes complex and
error-prone.

First Normal Form (1NF)

Fix (1NF):

SSN Name Card Type Card Number

S123456789 Alice Tan Visa 1234
S123456789 Alice Tan Master 5678
S987654321 Bob Lim Visa 2345

Benefits of 1NF:

▶ Simplifies querying and updating data.

▶ Eliminates redundancy within a column.

▶ Forms a foundation for higher normalization forms.

Second Normal Form (2NF)

What is 2NF?
▶ A table is in Second Normal Form (2NF) if it:

▶ Is already in 1NF.
▶ Has no partial dependency: no non-prime attribute depends on

a part of a composite primary key.

▶ The goal of 2NF is to ensure that all attributes are fully
functionally dependent on the whole primary key.

Non-2NF Table:

Card Number Card Type Customer Name

1234 Visa Alice Tan
5678 Master Alice Tan
2345 Visa Bob Lim

Issues with Non-2NF:

▶ Customer Name depends on SSN, not on Card Number.

Second Normal Form (2NF)

Fix (2NF):

▶ Decompose the table into two smaller tables.

Decomposed Tables:
Credit Cards Table:

Card Number Card Type

1234 Visa
5678 Master
2345 Visa

Customers Table:

SSN Customer Name

S123456789 Alice Tan
S987654321 Bob Lim

Third Normal Form (3NF)

What is 3NF?
▶ A table is in Third Normal Form (3NF) if it:

▶ Is already in 2NF.
▶ Has no transitive dependencies: no non-prime attribute

depends on another non-prime attribute.

▶ The goal of 3NF is to eliminate dependencies between
non-key attributes.

Non-3NF Table:

Transaction ID Card Number Merchant Name Merchant Country

1 1234 Store A Singapore
2 5678 Store B Malaysia

Issues with Non-3NF:

▶ Merchant Country depends on Merchant Name, not on
Transaction ID.

Third Normal Form (3NF)

Fix (3NF):

▶ Decompose the table into two smaller tables.

Decomposed Tables:
Transactions Table:

Transaction ID Card Number Merchant Name

1 1234 Store A
2 5678 Store B

Merchants Table:

Merchant Name Merchant Country

Store A Singapore
Store B Malaysia

Boyce-Codd Normal Form (BCNF)

What is BCNF?
▶ A table is in Boyce-Codd Normal Form (BCNF) if it:

▶ Is already in 3NF.
▶ For every functional dependency (X → Y), X is a superkey.

▶ BCNF eliminates anomalies caused by functional dependencies
where the determinant is not a superkey.

BCNF in Our Example:

▶ The 3NF example provided above already satisfies BCNF
because every determinant in the functional dependencies is a
superkey.

▶ No further decomposition is required.

ER Diagram

Creating an ER Diagram in Python

▶ To create and visualize an Entity-Relationship (ER) diagram,
we use the graphviz Python package.

▶ This package helps generate diagrams programmatically.

Installation: ‘pip install graphviz’

Code to Draw ER Diagram:
Define entities
er diagram.node(’Customers’, ’Customers\nssn
(PK)\nfirst name\nlast name \ncountry’, shape=’box’)

Define relationships
One customer can have 0 to N credit cards.
er diagram.edge(’Credit Cards’, ’Customers’, label=’0..N to 1..1
(owner ssn)’)

TODO: Add your code here

Table Creation: PostgreSQL

Customers Table:

CREATE TABLE cus tomers (
s sn CHAR(11) PRIMARY KEY,
f i r s t n am e VARCHAR(32) ,
l a s t name VARCHAR(32) ,
coun t r y VARCHAR(16)

) ;

Credit Cards Table:

CREATE TABLE c r e d i t c a r d s (
number VARCHAR(20) PRIMARY KEY,
t ype VARCHAR(32) ,
s sn CHAR(11) REFERENCES cus tomers (s sn)

) ;

Table Creation: PostgreSQL - Merchants Table

Merchants Table:

CREATE TABLE merchants (
code CHAR(10) PRIMARY KEY,
name VARCHAR(64) ,
coun t r y VARCHAR(16)

) ;

Table Creation: PostgreSQL - Transactions Table

Transactions Table:

CREATE TABLE t r a n s a c t i o n s (
i d e n t i f i e r INTEGER PRIMARY KEY,
number VARCHAR(20) REFERENCES c r e d i t c a r d s (number) ,
code CHAR(10) REFERENCES merchants (code) ,
da t e t ime TIMESTAMP,
amount NUMERIC

) ;

Populate Tables

Using Mockaroo for Sample Data:
▶ Use tools like Mockaroo to generate realistic sample data for:

▶ 100 customers.
▶ 300 credit cards.
▶ 20 merchants.
▶ 300 transactions.

▶ Mockaroo allows you to export data in SQL or CSV format for
quick integration.

https://mockaroo.com/

Populate Tables

How to Generate Tables Manually:

▶ For tables without foreign keys (customers, merchants),
directly generate from Mockaroo and insert data.

▶ For tables with foreign keys (credit cards, transactions),
generate temporary tables and assign keys using SQL.

Example for credit cards Table:

INSERT INTO c r e d i t c a r d s
SELECT comb . ssn , comb . number , comb . type
FROM (

SELECT c . ssn , cc . number , cc . type ,
ROWNUMBER() OVER(PARTITION BY cc . number) as row
FROM c r e d i t c a r d s t emp cc , cus tomer s c
WHERE RANDOM() < 0 .2

) comb
WHERE comb . row = 1
ORDER BY comb . number ;

Populate Transactions Table

Example for transactions Table:

INSERT INTO t r a n s a c t i o n s
SELECT ROWNUMBER() OVER () as i d e n t i f i e r , ∗
FROM (

SELECT cc . number , m. code , t . datet ime , t . amount
FROM t r a n s a c t i o n s t emp t , merchants m,
c r e d i t c a r d s cc
ORDER BY RANDOM() LIMIT 3000

) temp ;

Ensure Proper Constraints:

▶ Maintain data consistency by ensuring foreign key
relationships are respected.

▶ Verify domain constraints for all columns (e.g., date formats,
numeric ranges).

Pre-prepared Sample Data
Using Pre-prepared SQL Files:
To simplify the setup, we provide SQL files with pre-generated
data:

with open (’ code /CCMerchants . s q l ’ , ’ r ’) as f i l e :
q u e r y t o i n s e r t m e r c h a n t s = f i l e . r ead ()

w i th open (’ code /CCCustomers . s q l ’ , ’ r ’) as f i l e :
q u e r y t o i n s e r t c u s t om e r s = f i l e . r ead ()

w i th open (’ code / CCTransact ions . s q l ’ , ’ r ’) as f i l e :
q u e r y t o i n s e r t t r a n s a c t i o n s = f i l e . r ead ()

w i th open (’ code /CCCred i tCards . s q l ’ , ’ r ’) as f i l e :
q u e r y t o i n s e r t c a r d = f i l e . r ead ()

Execute these queries to populate tables with sample data.
Example Queries to Test Data:

SELECT ∗ FROM cus tomers LIMIT 5 ;
SELECT ∗ FROM c r e d i t c a r d s LIMIT 5 ;
SELECT ∗ FROM merchants LIMIT 5 ;
SELECT ∗ FROM t r a n s a c t i o n s LIMIT 5 ;

Task 1: Customers with Both JCB and Visa Credit Cards

Problem Statement:

▶ Find the first and last names of customers in Singapore who
own both JCB and Visa credit cards.

▶ Ensure that each customer is uniquely identified, even if their
names are identical to others in the database.

▶ Output should not print the same customer more than once.

Correct Query for Task 1

Efficient Solution Using Self-Joins:

SELECT c . f i r s t n ame , c . l a s t name
FROM cus tomers c , c r e d i t c a r d s cc1 , c r e d i t c a r d s cc2
WHERE c . s sn = cc1 . s sn

AND c . s sn = cc2 . s sn
AND cc1 . type = ’ j c b ’
AND cc2 . type = ’ v i s a ’
AND c . coun t r y = ’ S ingapo r e ’

GROUP BY c . ssn , c . f i r s t n ame , c . l a s t name ;

Explanation:

▶ cc1 and cc2: Two instances of the credit cards table are
joined with customers.

▶ Filters ensure only customers in Singapore with both JCB and
Visa cards are retrieved.

▶ GROUP BY ensures uniqueness by grouping results by SSN and
name.

Alternate Solution with Subqueries
Using Subqueries with IN:

SELECT c . f i r s t n ame , c . l a s t name
FROM cus tomers c
WHERE c . s sn IN (

SELECT cc1 . s sn
FROM c r e d i t c a r d s cc1
WHERE cc1 . type = ’ j c b ’

)
AND c . s sn IN (

SELECT cc2 . s sn
FROM c r e d i t c a r d s cc2
WHERE cc2 . type = ’ v i s a ’

)
AND c . coun t r y = ’ S ingapo r e ’ ;

Explanation:
▶ Subqueries find SSNs of customers with JCB and Visa cards

separately.
▶ Main query retrieves customer details for SSNs found in both

subqueries.
▶ Less efficient than self-joins, especially for large datasets.

Common Mistake: Incorrect Query

Example of an Incorrect Query:

SELECT DISTINCT c . f i r s t n ame , c . l a s t name
FROM cus tomers c , c r e d i t c a r d s cc1 , c r e d i t c a r d s cc2
WHERE c . s sn = cc1 . s sn

AND c . s sn = cc2 . s sn
AND cc1 . type = ’ j c b ’
AND cc2 . type = ’ v i s a ’
AND c . coun t r y = ’ S ingapo r e ’ ;

Why It’s Wrong:

▶ DISTINCT removes duplicate rows but does not ensure unique
customers by SSN.

▶ Customers with the same name but different SSNs might
cause ambiguity.

Task 1: Summary and Insights

Key Points:

▶ Use GROUP BY with SSN to uniquely identify customers.

▶ Avoid over-reliance on DISTINCT, as it may not resolve all
duplicate issues.

▶ Self-joins are generally more efficient than subquery-based
solutions.

Task 2: Number of Credit Cards per Customer

Problem Statement:

▶ Find how many credit cards each customer owns.

▶ Print the customer’s Social Security Number (SSN) and the
count of credit cards.

▶ Include customers who own no credit cards and print zero for
them.

Correct Query for Task 2

Solution Using LEFT OUTER JOIN:

SELECT c . ssn , COUNT(cc . number) AS ca r d coun t
FROM cus tomers c
LEFT OUTER JOIN c r e d i t c a r d s cc
ON c . s sn = cc . s sn
GROUP BY c . s sn ;

Explanation:

▶ LEFT OUTER JOIN ensures all customers are included, even if
they have no credit cards.

▶ COUNT(cc.number) counts the number of credit cards owned
by each customer.

▶ GROUP BY c.ssn groups results by the customer’s unique
SSN.

Incorrect Query for Task 2

Example of a Wrong Query:

SELECT cc . ssn , COUNT(∗)
FROM c r e d i t c a r d s cc
GROUP BY cc . s sn ;

Why It’s Wrong:

▶ Customers without credit cards are excluded because it uses
credit cards as the base table.

▶ It doesn’t account for customers who own no credit cards.

Key Takeaway: Always use a LEFT OUTER JOIN to ensure the
inclusion of all customers.

Task 3: Largest Transaction per Card Type

Problem Statement:

▶ Find the transaction identifier of the transactions with the
largest amount for each type of credit card.

▶ Use aggregate queries to identify the maximum transaction
amount per card type.

Correct Query for Task 3

Solution Using Aggregate Query:

SELECT t1 . i d e n t i f i e r
FROM t r a n s a c t i o n s t1
JOIN c r e d i t c a r d s cc1 ON t1 . number = cc1 . number
WHERE (cc1 . type , t1 . amount) IN (

SELECT cc2 . type , MAX(t2 . amount)
FROM t r a n s a c t i o n s t2
JOIN c r e d i t c a r d s cc2 ON t2 . number = cc2 . number
GROUP BY cc2 . type

) ;

Explanation:

▶ The inner query finds the maximum amount for each credit
card type.

▶ The outer query retrieves the transaction identifiers matching
those maximum values.

Slower Query in Task 3

Using Subqueries with ALL:

SELECT t1 . i d e n t i f i e r
FROM t r a n s a c t i o n s t1
JOIN c r e d i t c a r d s cc1 ON t1 . number = cc1 . number
WHERE t1 . amount = ALL (

SELECT MAX(t2 . amount)
FROM t r a n s a c t i o n s t2
JOIN c r e d i t c a r d s cc2 ON t2 . number = cc2 . number
WHERE cc1 . type = cc2 . type

) ;

Performance Considerations:

▶ This approach is slower because it evaluates the MAX function
multiple times for each type.

Slower Query in Task 3

Example of a Slow Query:

SELECT t1 . i d e n t i f i e r
FROM t r a n s a c t i o n s t1
JOIN c r e d i t c a r d s cc1 ON t1 . number = cc1 . number
WHERE EXISTS (

SELECT MAX(t2 . amount)
FROM t r a n s a c t i o n s t2
JOIN c r e d i t c a r d s cc2 ON t2 . number = cc2 . number
WHERE cc2 . type = cc1 . type
HAVING t1 . amount = MAX(t2 . amount)

) ;

Why It’s Suboptimal:

▶ Uses EXISTS with HAVING, which results in repeated
evaluations for each row.

▶ Significantly slower on large datasets.

Task 4: Largest Transactions Without Aggregates

Problem Statement:

▶ Print the transaction identifiers of the transactions with the
largest amount for each type of credit card.

▶ Do not use aggregate functions (e.g., MAX, GROUP BY).

Correct Query for Task 4

Using ALL for Comparison:

SELECT t1 . i d e n t i f i e r
FROM t r a n s a c t i o n s t1
JOIN c r e d i t c a r d s cc1 ON t1 . number = cc1 . number
WHERE t1 . amount >= ALL (

SELECT t2 . amount
FROM t r a n s a c t i o n s t2
JOIN c r e d i t c a r d s cc2 ON t2 . number = cc2 . number
WHERE cc2 . type = cc1 . type

) ;

Explanation:

▶ WHERE t1.amount >= ALL (...) : Ensures t1.amount is
the largest among all transactions of the same card type.

▶ The subquery filters transactions by matching credit card
types.

▶ This avoids using aggregate functions like MAX.

Key Takeaways and Submission Reminder
Key Takeaways:

▶ Normalization: Ensure data integrity by applying 1NF, 2NF,
3NF, and BCNF to avoid redundancy and anomalies.

▶ SQL Queries: Learn how to write efficient queries using:
▶ JOIN, GROUP BY, and subqueries.
▶ Techniques to ensure uniqueness, like DISTINCT, GROUP BY,

and using primary keys.

▶ Performance Considerations: Compare and choose between
self-joins, subqueries, and aggregate functions for efficiency.

▶ Validation: Always test queries with edge cases to ensure
accuracy.

Submission Reminder:
▶ Submit a Jupyter Notebook containing:

▶ Python code to generate the ER diagram (e.g., using
graphviz).

▶ Outputs to all tasks with SQL queries.

Thank You!

