CS4221 Tutorial 3:
Timeseries databases: InfluxDB

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

Objective

By the end of this tutorial, you will:

» Set up InfluxDB server using Docker and monitor its status in the InfluxDB UI.
Gain a fundamental understanding of schema design principles in InfluxDB.
Interact with InfluxDB using the Python client and execute queries with Flux.

Insert data into influxDB from various data sources.

vV V Y V

Write Flux queries to retrieve, analyze, and manipulate time series data

Setup

Notebooks: https://mlsys.io/t3.zip

Step 1: Install InfluxDB

» Download the provided docker-compose file.
» Create configuration files such as name, password and token.
» Verify InfluxDB is running through influxDB UI.

Step 2: Prepare the environment
» Make sure you have installed the anaconda
» Download the provided environment file and set up the virtual environment.

» Execute hello_influxdb.ipynb to make sure everything is ok.

https://mlsys.io/t3.zip

Prerequisites

Before starting, ensure you have gone through :

» InfluxDB key concepts: https://docs.influxdata.com/influxdb/cloud/reference/key-concepts

» Flux language introduction: https://docs.influxdata.com/flux/vO/

https://docs.influxdata.com/influxdb/cloud/reference/key-concepts
https://docs.influxdata.com/flux/v0/

Hello-World

After you start docker-compose file following the README, you will get

lingze@worker-012:~/cs4221/time_series_db_tutorial$ docker compose up influxdb2 -d
[+] Running 11/11
v influxdb2 10 layers [ii | 0B/0B Pulled
v c29f5b76f736 Pull complete
6645798fcded4 Pull complete
5936f16047c5 Pull complete
83878a8bbcOc Pull complete
df3c25d9e353 Pull complete
4932b88fab34 Pull complete
b334fbc9c07e Pull complete
cc4562809a5e Pull complete
f1bb735cf165 Pull complete
82615¢c5a9d3f Pull complete
[+] Running 4/4
v Network time_series_db_tutorial _default Created
v Volume "time_series_db_tutorial_influxdb2-data" Created
v Volume "time_series_db_tutorial_influxdb2-config" Created
v Container time_series_db_tutorial-influxdb2-1 Started

v
v
v
v
v
v
v
v
v

Hello-World

Open the InfluxDB Ul to verify server is running.

€« C ©® localhost:8086/signin (OB +4 ® 9 D =mEm

g8 M Gmail @ YouTube @ BrpcEnvPrepare @ {HFPerfift{TiEf... £ Time Series Datab... Tutorials - Tutorial.. @ Recommender Sys... @ NUS Libraries Prox... (-J Cloud Theme Clic.. [distributed system 0 FAHE

influxdb”

Username

admin

Password

SIGN IN

Hello-World

Open the InfluxDB Ul to verify server is running.

Get Started

Write and query data using the programming language of your choice

Python Node.js Arduino
USEFUL LINKS

InfluxDB University

Get Started with Flux

= nsde

Explore

Build a D

Write

Report a bug

Community Forum
InfluxDB CLI

Feature Req
Write and query data using the InfluxDB Command Line Interface. Supports CSV and Line Protocol.

Server Agent (Telegraf)

Easily collect and write data using custom stand-alone agent plugins

Hello-World

Before executing the scripts, something to note:

» Update the server address (URL) to match your configuration.

» Export your access token as an environment variable or define it directly in the code.

import influxdb_client

import os

import time

from influxdb_client import InfluxDBClient, Point, WritePrecision
from influxdb_client.client.write_api import SYNCHRONOUS

token = os.environ.get("INFLUXDB TOKEN")
export your token into the environment variable INFLUXDB_TOKEN first

urt = “"http://10.10.10.247:8086"
replace url with your server address

1T your server 1s on the same machine, use “http://localhost:8886"

write client = influxdb_client.InfluxDBClient(url=url, token=token)

Example

Let’s try analyzing time-series data using InfluxDB.
Check the details in file hello_influxdb_2.ipynb.

We will work with a publicly available dataset from the State of Connecticut, which provides
records of school COVID-19 cases from 2020 to 2022 in multiple formats.

After basic preprocessing, we obtain the following data schema:

we take a look at the data schema
data = pd.concat([data_2020, data_2021], ignore_index=True)

data.head()
A . total . date academic
district school name city cases report period updated year
0 Andover School Andover Elementary e 0 10/08/2020 - 10/14/2020 06/23/2021 2020-2021
District School
1 AT L Andover Elementary ;. o 0 10/15/2020 - 10/21/2020 06/23/2021 2020-2021
District School
Andover School Andover Elementary 10/22/2020 - _
2 Dietriot Sehog, Andover 0 l0j28/2020 06/23/2021 2020-2021
3 ARV e AncoverElememtary Sy, ooy ror 0 10/29/2020 - 11/04/2020 06/23/2021 2020-2021
District School
4 Andover School Andover Elementary o 0 11/05/2020 - 11/11/2020 06/23/2021 2020-2021

District School

Example

Insert these data into InfluxDB following schema design principle.
Python client provide API to directly read csv data.

We define
- "school name" ,"district" ,"city" ,"academic year", "date updated" attributes as tags.

- "total cases" attributes as field.
- "report period" attributes as timestamp.

insert these data into InfluxDB
write_api = client.write_api(write_options=SYNCHRONOUS)
MEASUREMENT = "cases"
write_api.write(
bucket=BUCKET_NAME,
org=DEFAULT_ORG,
record = data,
data_frame_measurement_name = MEASUREMENT,
data_frame_tag_columns = ["school name", "district", "city", "academic year", "date updated"],
data_frame_field_columns = ["total cases"],
data_frame_timestamp_column = "report period",

Example

After insertion, we execute several queries to do some analysis.
Target 1. retrieve the last 3 years covid-19 cases for the city of "Greenwich"

Query: from(bucket: "covid-schools")

|> range(start: -3y)
|> filter(fn: (r) => r.city == "Greenwich")
|> yield()

query_api = client.query_api()

query = """from(bucket: "covid-schools")

|> range(start: -3y)

|> filter(fn: (r) => r.city == "Greenwich")

|> yield() nun

FluxQL query
retrieve the last 3 years data for the city of Greenwich
tables: TableList = query_api.query(query, org="docs")

[Suggestion]: better to execute this query in the InfluxDB UI, which will visualize the data for you.

to_value() will convert the result to a list of record Dict
we check the head of the result
tables.to_values() [:5]

[dict_values(['_result', @, datetime.datetime(2022, 1, 9, 8, 54, 23, 177119, tzinfo=tzlocal()), datetime.datetime
(2025, 1, 9, 2, 54, 23, 177119, tzinfo=tzlocal()), datetime.datetime(2022, 5, 5, @, @, tzinfo=tzlocal()), @, 'tot
al cases', 'cases', '2021-20822', 'Greenwich', '06/16/2022', 'Greenwich School District', 'Abilis'l]),
dict_values(['_result', @, datetime.datetime(2022, 1, 9, 8, 54, 23, 177119, tzinfo=tzlocal()), datetime.datetime
(2025, 1, 9, 2, 54, 23, 177119, tzinfo=tzlocal()), datetime.datetime(2022, 5, 12, @, @, tzinfo=tzlocal()), @, 'to
tal cases', 'cases', '2021-2022', 'Greenwich', '06/16/2022', 'Greenwich School District', 'Abilis'l),

Example

After insertion, we execute several queries to do some analysis.
Target 2. count the number of cases in each city in the last three years.

Query:

from(bucket:"covid-schools")
|> range(start: -3y)
|> filter(fn: (r) => r._measurement == "cases" and r._field == "total cases")
|> group(columns: ["city"])
|> drop(columns: ["_start", "_stop"])
|> sum()

Example

After insertion, we execute several queries to do some analysis.
Target 2. count the number of cases in each city in the last three years.

query = """from(bucket:"covid-schools")

|> range(start: -3y)

|> filter(fn: (r) => r._measurement == "cases" and r._field == "total cases")
|> group(columns: ["city"])

|> drop(columns: ["_start", "_stop"])

|> sum()

FluxQL query
group the data by city and collect the total cases for each city

tables:TableList = query_api.query(query, org="docs")

tables.to_values()[:5]

'Andover', 99]),

, ‘Ansonia‘', 1751),
'Ashford', 154]),

, ‘Avon', 1182]),
'Barkhamsted', 971)]

[dict_values(['_result',
dict_values(['_result’,
dict_values(['_result’,
dict_values(['_result',
dict_values(['_result’,

PWNRS

Example

After insertion, we execute several queries to do some analysis.
Target 3: Filter out the city with total cases less than 700 based on the result of Query 2

Query:

from(bucket:"covid-schools")
|> range(start: -3y)
|> filter(fn: (r) => r._measurement == "cases" and r._field == "total cases")
|> group(columns: ["city"])
|> drop(columns: ["_start", " _stop"])
|> sum()
|> filter(fn: (r) => r._value > 700)

Example

After insertion, we execute several queries to do some analysis.
Target 3: Filter out the city with total cases less than 700 based on the result of Query 2

Query:

query = """from(bucket:"covid-schools")

|> range(start: -3y)

|> filter(fn: (r) => r._measurement == "cases" and r._field == "total cases")

|> group(columns: [“city"])

|> drop(columns: ["_start", "_stop"l])

|> sum()

|> filter(fn: (r) => r._value > 700)

Flux is a functional language, and you can keep piping the result to other filter.
Here we filter out the city with total cases less than 700

tables:TableList = query_api.query(query, org="docs")
print(f"there are {len(tables)} cities with total cases more than 700")
tables.to_values()[:5]

there are 62 cities with total cases more than 700

[dict_values(['_result', @, 'Avon', 1182]),
dict_values(['_result', 1, 'Berlin', 7661),
dict_values(['_result', 2, 'Bloomfield', 889]),
dict_values(['_result', 3, 'Branford', 826]),
dict_values(['_result', 4, 'Bridgeport', 1426]1)]

Quiz

In this homework, we will analyze crime data from the Hartford Police Department.

This historical dataset includes reported crime incidents (excluding sexual assaults) that
occurred in the City of Hartford from January 1, 2005, to May 18, 2021.

Check the details in file hello_influxdb_3.ipynb.

We have finished the data loading and preprocessing steps, please finish above tasks. During the
process, carefully define tags, fields, and timestamps to ensure your queries are optimized for
efficiency.

- Question 1: Retrieve top-10 most common types of cases in all time.
- Question 2: Count the Number of cases with code "1901" over time grouped by week.
- Question 3: Get the latest incident (most recent time) for the "ucr_1 code" case.

	Slide 1: CS4221 Tutorial 3: Timeseries databases: InfluxDB
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

