
CS4221 Tutorial 4:
Vector Databases - Milvus

Yao LU
2024 Semester 2

National University of Singapore
School of Computing

By the end of this tutorial, you will:

➢ Set up Milvus server using Docker.

➢ Prepare the virtual environment and interact with Milvus server.

➢ Develop a fundamental understanding of schema design principles in Milvus.

➢ Perform basic operations such as create, insert, search and delete data.

➢ Explore various index types, fine-tune parameters, and evaluate search performance.

Objective

Step 1: Install Milvus

➢ Download the provided docker-compose file.

➢ Start up the docker container and verify Milvus server is running.

Step 2: Prepare the environment

➢ Make sure you have installed the anaconda

➢ Download the provided environment file and set up the virtual environment, or

follow the documentation to manually download required dependencies.

➢ Execute quickStart.ipynb to make sure everything is ok.

Setup

Prerequisites

Before starting, ensure you have gone through :

➢ Milvus concept overview:

- https://milvus.io/docs/manage-collections.md

- https://milvus.io/docs/schema.md

➢ Index related documentations

- IVF_FLAT: https://milvus.io/docs/ivf-flat.md

- HNSW: https://milvus.io/docs/hnsw.md

- Blog: https://zilliz.com/learn/how-to-pick-a-vector-index-in-milvus-visual-guide

https://milvus.io/docs/manage-collections.md
https://milvus.io/docs/schema.md
https://milvus.io/docs/ivf-flat.md
https://milvus.io/docs/hnsw.md
https://zilliz.com/learn/how-to-pick-a-vector-index-in-milvus-visual-guide

Prerequisites

Before starting, ensure you have gone through :

➢ Milvus concept overview

- https://milvus.io/docs/manage-collections.md

- https://milvus.io/docs/schema.md

➢ Index related documentations

- Metric type: https://milvus.io/docs/metric.md

- IVF_FLAT: https://milvus.io/docs/ivf-flat.md

- HNSW: https://milvus.io/docs/hnsw.md

- Blog: https://zilliz.com/learn/how-to-pick-a-vector-index-in-milvus-visual-guide

https://milvus.io/docs/manage-collections.md
https://milvus.io/docs/schema.md
https://milvus.io/docs/metric.md
https://milvus.io/docs/ivf-flat.md
https://milvus.io/docs/hnsw.md
https://zilliz.com/learn/how-to-pick-a-vector-index-in-milvus-visual-guide

Hello-World

After you start the provided docker-compose, you will get

Hello-World

Follow the documentation to prepare you environment.

Before executing the scripts, something to note:

➢ Update the server address (HOST)

➢ No restriction on the database name

Hello-World

Before executing the scripts, something to note:

➢ For the embedding model example, ensure pymilvus[model] dependency installed.

➢ Otherwise, refer to the following synthetic data example.

Example

In this tutorial, we explore different search indexes and fine-tune them to evaluate
retrieval performance on a real-world dataset.

For details, refer to fine_tune_index.ipynb.

We focus on two fundamental indexes: IVF_FLAT and HNSW, using the Glove-25-angular dataset. This
dataset has a dimension of 25, with 1,183,514 training samples and 10,000 test samples

The schema design is as follows:

Example

Take the Inverted File Flat index (IVF_FLAT) as an example.

IVF_FLAT offers two tunable hyperparameters:

- nlist: the number of partitions to create using the k-means algorithm.

- nprobe: the number of partitions to consider during the search for candidate

The nlist parameter is set when building the IVF_FLAT index, while nprobe is adjusted
dynamically for each query request.

Example

First, we fix nlist and tune nprobe to evaluate query performance in terms of latency and recall.

We build the index by specifying:

- The field for the index_type (in this case, "embedding").

- The metric_type (here, we use COSINE).

- The index type and nlist parameter.

Example

Next, we tune nprobe while executing the same search queries to analyze its impact on query
latency and average recall.

Example

From this result, we can observe that as the nprobe increases, the search latency increase
while the average recall degrades.

Next, we fix the nprobe and build the index with different nlist values to analyze its impact

Homework

In this homework, we try to tune the parameters of HNSW and analyze the impact
on the query efficiency and accuracy.

HNSW offers three tunable hyperparameters:

- M: the maximum number of connections for each node in the graph

- efConstruction: the size of the dynamic candidate list which controls index search
speed/build tradeoff.

- ef: the size of the dynamic candidate list during search

Task:

Follow the process of analyzing IVF_FLAT, explore the impact and summarize the trends
observed with varying values for these parameters.

	Slide 1: CS4221 Tutorial 4: Vector Databases - Milvus
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

