CS4221 Tutorial 5:
Retrieval-Augmented Generation
(RAG)

Yao LU

2024 Semester 2

Objective

By the end of this tutorial, you will:

» Set up local large language model (LLM).

» Prepare the virtual environment for mini-RAG application.
» Understand the basic pipeline in RAG application.
>

Learn to implement a mini-RAG under LangChain framework.

Setup

Step 1: Install ollama

» Download the llama docker image from dockerhub.

» Choose one specific model and start up the model service following README .

Step 2: Prepare the environment

» Make sure you have installed the anaconda.

» Download the provided environment file.

» Set up the virtual environment (may take a few minitutes)

NOTE: If the virtual environment exists, delete it and create a new one.

https://hub.docker.com/r/ollama/ollama

Prerequisites

Before starting, ensure you have gone through :

> Ollama overview:

- https://github.com/ollama/ollama

» LangChain
- RAG Concept: https://python.langchain.com/docs/concepts/rag/

- RAG Guide Part 1: https://python.langchain.com/docs/tutorials/rag/

- RAG Guide Part 2: https://python.langchain.com/docs/tutorials/ga chat history/

https://github.com/ollama/ollama
https://python.langchain.com/docs/concepts/rag/
https://python.langchain.com/docs/tutorials/rag/
https://python.langchain.com/docs/tutorials/qa_chat_history/

Hello-World

NOTE: model variable should match your local deployed LLM.

before this, install the ollama
for linux user: curl —fsSL https://ollama.com/install.sh | sh

or using Docker image to run llama.

refecto bhitpns:/f/github cam/allama/ollama, find the model which your local computer can hold.
1lm f OllamaLLM(model="11ama3.2")

interact with the LLM to verify service is running.
1lm.invoke("The first man on the moon was ...")

'...Neil Armstrong. He stepped onto the lunar surface on July 20, 1969, as part of the Apollo 11 mission. His fam
ous words upon setting foot on the moon were: "That\'s one small step for man, one giant leap for mankind.™'

Hello-World

NOTE:

The first execution will install the embedded model from the huggingface.
Try to replace the in-memory vector store to the Milvus deployed previously

load pre-trained embedding model
dwhich ds used fo gocoda text o amhadding vectors
embeddings = HuggingFaceEmbeddings(model name="sentence- transformers/all mpnet—base—vZ")

refer to hugglngface hub for more models

there we need a vectordb to store the embedding vector and support the efficient similarity search
Considering the size of the dataset is small, we just use the in-memory vectorstore

from langchain_core.vectorstores import InMemoryVectorStore

vector_store = InMemoryVectorStore(embeddings)

Hello-World

NOTE:

Try different questions and verify that you can search for relevant news.

check the answer

response = graph.invoke({"question": "How's going with Tata Electronics"})
pprint.pprint(response["answer"])

("I don't know the current status or performance of Tata Electronics "
'specifically beyond the information provided about their iPhone '
'manufacturing plans and acquisition of the Chennai Pegatron plant. The '
'company is expanding its iPhone manufacturing capabilities and has been '
'increasing its presence in the Indian market. Tata operates an existing '

""iPhone assembly plant in Karnataka that was acquired from Taiwan's Wistron "
'in 2023."')

	Slide 1: CS4221 Tutorial 5: Retrieval-Augmented Generation (RAG)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

