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Stock Trading Example

« How traditional databases work?

Timestamp Symbol Price
2025-02-08 09:30:01 AAPL 150.25
2025-02-08 09:30:02 AAPL 150.30
2025-02-08 09:30:03 AAPL 150.10
2025-02-08 09:30:04 TSLA 780.50
2025-02-08 09:30:05 TSLA 780.75
2025-02-08 09:30:06 AAPL 150.00
30:07 GOOG 2750.10
30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200
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Stock Trading Example

« How traditional databases work?

Timestamp
2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

Price

150.25

150.30

150.10

780.50

780.75

150.00

2750.10

2751.50

781.00

149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

symbol in the dataset.

Calculate the total traded volume for each
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Calculate the total traded volume for each
symbol in the dataset.

Stock Trading Example

* -

Ti Volume
SELECT Symbol, SUM(Volume) AS TotalVolume
FROM Trades

GROUP BY Symbol;

2( 300

2( 200
2( 500

2( . 100

2025-02-08 09:30:0 150
2025-02-08 09:30:06 AAPL 150.00 250
30:07 GOO0G 2750.10 400
30:08 GOOG 2751.50 300
30:09 TSLA 781.00 600
30:10 AAPL 149.95 200

Real-time stock market data
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Stock Trading Example

« How traditional databases work?

Timestamp
2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

Price

150.25

150.30

150.10

780.50

780.75

150.00

2750.10

2751.50

781.00

149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

Calculate the total traded volume for each
symbol in the dataset.

What is the average trade price for TSLA
between 09:30:04 and 09:30:09°

@ RisingWavelabs



/

Stock Trading Example

« How traditional databases work?

Timestamp
2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

Price

150.25

150.30

150.10

780.50

780.75

150.00

2750.10

2751.50

781.00

149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

Calculate the total traded volume for each
symbol in the dataset.

What is the average trade price for TSLA
between 09:30:04 and 09:30:09°

Which trade(s) had the largest single-
trade volume in the dataset?
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Stock Trading Example

« How traditional databases work?

Timestamp Symbol Price
2025-02-08 09:30:01 AAPL 150.25
2025-02-08 09:30:02 AAPL 150.30
2025-02-08 09:30:03 AAPL 150.10
2025-02-08 09:30:04 TSLA 780.50
2025-02-08 09:30:05 TSLA 780.75
2025-02-08 09:30:06 AAPL 150.00
30:07 GOOG 2750.10
30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Ad-hoc queries, or “exploratory queries”

Volume

300

200

500

100

150

250

400

300

600

200

Calculate the total traded volume for each
symbol in the dataset.

What is the average trade price for TSLA
between 09:30:04 and 09:30:09°

Which trade(s) had the largest single-
trade volume in the dataset?
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Stock Trading Example

« How traditional databases work?

Timestamp
2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Ad-hoc queries, or “exploratory queries”

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

Price
150.25
150.30
150.10
780.50
780.75
150.00
2750.10
2751.50
781.00

149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

Ask

Answer
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Stock Trading Example

* How about doing monitoring?

Timestamp Symbol Price
2025-02-08 09:30:01 AAPL 150.25
2025-02-08 09:30:02 AAPL 150.30
2025-02-08 09:30:03 AAPL 150.10
2025-02-08 09:30:04 TSLA 780.50
2025-02-08 09:30:05 TSLA 780.75
2025-02-08 09:30:06 AAPL 150.00
30:07 GOOG 2750.10
30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200
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Stock Trading Example

* How about doing monitoring?

Timestamp Symbol Price
2025-02-08 09:30:01 AAPL 150.25
2025-02-08 09:30:02 AAPL 150.30
2025-02-08 09:30:03 AAPL 150.10
2025-02-08 09:30:04 TSLA 780.50
2025-02-08 09:30:05 TSLA 780.75
2025-02-08 09:30:06 AAPL 150.00
30:07 GOOG 2750.10
30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

seconds.

Every second, calculate the average trade
price for each symbol in the last 10
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Stock Trading Example

* How about doing monitoring?

Timestamp

2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04

2025-02-08 09:30:05

2025-02-08 09:30:06

30:07

30:08

30:09

30:10

Every second, calculate the average trade
price for each symbol in the last 10
seconds.

Symbol Price Volume

00 ' /\E;L(

SELECT symbol, AVG(price) AS aveg_price

FROM trades
WHERE event_time = NOW() - INTERVAL 10 SECOND
GROUP BY symbol;

GOOG 2751.50 300 An Swer
TSLA 781.00 600
AAPL 149.95 200

Real-time stock market data
@ RisingWavelabs
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Stock Trading Example

* How about doing monitoring?

Timestamp Symbol Price

2025-02-08 09:30:01
o000
2025-02-08 09:30:02

2025-02-08 09:30:03

SELECT symbol, AVG(price) AS aveg_price

FROM trades
WHERE event_time =
GROUP BY symbol;

2025-02-08 09:30:04

2025-02-08 09:30:05

2025-02-08 09:30:06

30:07

30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Every second, calculate the average trade
price for each symbol in the last 10
seconds.

Volume

TSLA Avg Price

Update Time GOOG Avg Price

AAPL Avg Price

NOW() - INTERVAL 10 SECOND

300
600

200
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Stock Trading Example

* How about doing monitoring?

Timestamp Symbol Price

2025-02-08 09:30:01
o000
2025-02-08 09:30:02

2025-02-08 09:30:03

SELECT symbol, AVG(price) AS aveg_price

FROM trades
WHERE event_time =
GROUP BY symbol;

2025-02-08 09:30:04

2025-02-08 09:30:05

2025-02-08 09:30:06

30:07

30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Volume

Every second, calculate the average trade
price for each symbol in the last 10
seconds.

Trigger query!

GOOG Avg Price

Update Time AAPL Avg Price TSLA Avg Price

09:30:07 150.16 780.625 2750.10

NOW() - INTERVAL 10 SECOND

300
600

200

@ RisingWavelabs
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Stock Trading Example

* How about doing monitoring?

Timestamp Symbol Price

2025-02-08 09:30:01
o000
2025-02-08 09:30:02

2025-02-08 09:30:03

SELECT symbol, AVG(price) AS aveg_price

2025-02-08 09:30:04 SIS

WHERE event_time = NOW() - INTERVAL 10 SECOND

2025-02-08 09:30:05 [STISESVEpUPIC

2025-02-08 09:30:06

30:07

30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Volume

300

600

200

Every second, calculate the average trade
price for each symbol in the last 10
seconds.

Trigger query!

Trigger query!. , , _
Update Time AAPL Avg Price TSLA Avg Price GOOG Avg Price
09:30:07 150.16 780.625 2750.10
09:30:08 150.16 780.625 2750.80

@ RisingWavelabs
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Every second, calculate the average trade
price for each symbol in the last 10
seconds.

Stock Trading Example

* How about doing monitoring?

] I
Timestamp Symbol Price Volume T”gger query-
.an- ] |
2025-02-08 09:30:01 Y X ) Trlgger qU,%Qénme AAPL Avg Price TSLA Avg Price GOOG Avg Price
2025-02-08 09:30:02 Trigger qgf@pyj 150.16 780.625 2750.10
. ) . 09:30:08 150.16 780.625 2750.80
PAWASSUPROLRWERCMIRY  SE| ECT symbol, AVG(price) AS aveé_price
09:30:09 150.16 78075 2750.80

2025-02-08 09:30:04 [IEENUNERS IR
WHERE event_time = NOW() - INTERVAL 10 SECOND

2025-02-08 09:30:05 [STISESVEpUPIC

2025-02-08 09:30:06

30:07

30:08 GOOG 2751.50 300
30:09 TSLA 781.00 600
30:10 AAPL 149.95 200

Real-time stock market data
@ RisingWavelabs
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Stock Trading Example

seconds.

* How about doing monitoring?

1 I

Timestamp Symbol Price Volume T”gger query-

~02-08 09:30: Trigger L
2025-02-08 09:30:01 [NEPAPN gger QUL rime

2025-02-08 09:30:02 Trigger qoEry!

09:30:08

PAUZCROPAERUERCREY  SE| ECT symbol, AVG(price) AS ave_price Trigger query!

2025-02-08 09:30:04 [IEENUNERS IR
WHERE event_time = NOW() - INTERVAL 10 SECOND

GROUP BY symbol;

09:30:10

2025-02-08 09:30:05

2025-02-08 09:30:06

30:07

30:08 GOOG 2751.50 300
30:09 TSLA 781.00 600
30:10 AAPL 149.95 200

Real-time stock market data

AAPL Avg Price

150.16

150.16

150.16

150.12

Every second, calculate the average trade
price for each symbol in the last 10

TSLA Avg Price
780.625
780.625

780.75

780.75

GOOG Avg Price

2750.10

2750.80

2750.80

2750.80

@ RisingWavelabs
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bol in the last 10

Stock Trading Ex{EE = Eam—s e the average o

public ¢

onne detail
"jdbc:postgresql

« How about doing moniiEasEs e

"SELECT symbol, AVG(price) AS avg_pr
"FROM trades " +

"WHERE event_tim now() - interval '10
"GROUP BY symbo

Timestamp Symbol

publ static void
1. Establish a databa nnection (ideally once, or use a connection pool).

. . . try (Connection connection = DriverManager.getConnection(JDBC_URL, DB_USER, DB_PASSWORD)) { i TSLA Avg Price GOOG Avg Price

System.out.println("Connected to PostgreSQL database!");

2025-02-08 09:30:01

2025_02_08 093002 Set up a scheduled task to run every 1 second. 780'625 2750'10

eduledExecutorService executor = Executors.newSingleThreadScheduledExecutor();

CHERE Sc el c 780.625 2750.80
executor.scheduleAtFixedRate(() — {
2025—02—08 09'3003 S ELECT Symbo-l_ AVG ( price ) queryAndPrintAveragePrice(connection);

4 }, ©, 1, TimeUnit.SECONDS); 780.75 2750.80

2025—02—08 09'3004 FROM trades Keep the pro m runr (for demo purposes).
WHERE EVEHt_time ;_)-:_ NOW() In a real ,‘_?U.‘,d{!mdw u : n acefully.

GROUP BY symbol;

780.75 2750.80
2025-02-08 09:30:05

2025-02-08 09:30:06
30:07
30:08
30:09 v., s s : o ) . AGE PRICELUERTYS

;O’IO Average Price (Last 10s) =

Real-time stock mar K — :

@ RisingWavelabs
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Stock Trading Exg&

public ¢

« How about doing monit

USEL:
"FRO
"WHE
"GRO

Timestamp Symbol

publ s

2025-02-08 09:30:01
o000

2025-02-08 09:30:02

PAPISRWVAJSUERRIRY  SE| ECT symbol, AVG(price)

2025-02-08 09:30:04 SIS
WHERE event_time = NOW()

2025-02-08 09:30:05 [STISESVEpUPIC

2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Real-time stock mark

Complex...

1

onne detail
"jdbc:postgresql

price for
ults in real time;

ECT symbol, AVG(price) AS avg_pr

M trades " +

RE event_tim now() - interval '10
UP BY symbo

tatic void

Establish a databa nnection (ideally once, or use a connection pool)

(Connection connection = DriverManager.getConnection(JDBC_URL, DB_USER, DB_PASSWORD)) { i TSLA Avg Price
System.out.println("Connected to PostgreSQL database!");

Set up a scheduled task to run every 1 seco

eduledExecutorService executor = Executors.newS

executor.scheduleAtFixedRate(() — {
queryAndPrintAveragePrice(connection);
}, ©, 1, TimeUnit.SECONDS);

Keep the pro m runr (for demo purposes)
In a real ou'd handle shut
f 1 inute, t

Average Price (Last 10s) =

780.625
gleThreadScheduledExecutor();

780.625
780.75

780.75

acefully.

AGE_PRICE_QUERY);

ulate the average trade
bol in the last 10

GOOG Avg Price

2750.10

2750.80

2750.80

2750.80

@ RisingWavelabs
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Stock Trading Example

* How about doing monitoring?

Timestamp
2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Complex... and inefficient!!

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

Price

150.25

150.30

150.10

780.50

780.75

150.00

2750.10

2751.50

781.00

149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

Query time

v

v

Full table scan

Data size

@ RisingWavelabs
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Why Stream Processing?

 Challenges:
« Require humans (or programs) to repeatedly issue ad-hoc queries
« Have to perform full computation queries
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Why Stream Processing?

 Challenges:

« Require humans (or programs) to repeatedly issue ad-hoc queries

« Have to perform full computation queries

Timestamp

2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05

2025-02-08 09:30:06

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA

AAPL

Price

150.25

150.30

150.10

780.50

780.75

150.00

Volume

300

200

500

100

150

250
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Why Stream Processing?

 Challenges:

« Require humans (or programs) to repeatedly issue ad-hoc queries
« Have to perform full computation queries

Timestamp Symbol Price Volume
2025-02-08 09:30:01 AAPL 150.25 300
2025-02-08 09:30:02 AAPL 150.30 200
2025-02-08 09:30:03 AAPL 150.10 500
2025-02-08 09:30:04 TSLA 780.50 100
2025-02-08 09:30:05 TSLA 780.75 150
2025-02-08 09:30:06 AAPL 150.00 250
2025-02-08 09:30:07 GOOG 2750.10 400
2025-02-08 09:30:08 GOOG 2751.50 300
2025-02-08 09:30:09 TSLA 781.00 600
2025-02-08 09:30:10 AAPL 149.95 200

@ RisingWavelabs
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Why Stream Processing?

* | et's do stream processing!

* Instead of letting users issue queries proactively...

Timestamp

2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
2025-02-08 09:30:07
2025-02-08 09:30:08
2025-02-08 09:30:09

2025-02-08 09:30:10

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

150.25

150.30

150.10

Volume

300

200

500

<

Send queries to databases

@ RisingWavelabs
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Why Stream Processing?

* | et's do stream processing!
* Instead of letting users issue queries proactively...
| et databases push results to users!

Timestamp Symbol Price Volume
2025-02-08 09:30:01 AAPL 150.25 300
2025-02-08 09:30:02 AAPL 150.30 200
2025-02-08 09:30:03 AAPL 150.10 500
2025-02-08 09:30:04 TSLA

2025-02-08 09:30:05 TSLA

2025-02-08 09:30:06 AAPL

2025-02-08 09:30:07 GOOG

2025-02-08 09:30:08 GOOG

2025-02-08 09:30:09 TSLA

2025-02-08 09:30:10 AAPL Send I'eSUI'[S to users!

@ RisingWavelabs
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Why Stream Processing?

* | et's do stream processing!

* Instead of letting users issue queries proactively...
| et databases push results to users!

* Require defining queries beforehand
« Computation is triggered by events

2025-02-08 09:30:01 AAPL 150.25 300 H ' .
SELECT
INTERVAL 1' SE ND, INTERVAL '1@"' NDS) vindow_start
! N[ L ‘10" ) ) yindow_end

Send results to users!

@ RisingWavelabs
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Why Stream Processing?

Monitoring Streams — A New Class of Data Management Applications

Don Carney Ugur Cetintemel Mitch Cherniack Christian Convey
Brown University Brown University Brandeis University Brown University
dpe@cs.brown.edu ugur@ecs.brown.edu mfc@ecs.brandeis.edu cje@es.brown.edu
Sangdon Lee Greg Seid Michael brak Nesime Tatbul Stan Zdonik
Brown University Brown University M Brown University Brown University
sdlee@cs.brown.edu gss@cs.brown.edu k mit.edu bul@cs.brown. edu shz@es.brown.edu
and answers must be computed with incomplete
information. Lastly, DBMSs assume that applications
Abstract

This paper introduces monitoring applications,
which we will show differ substantially from
conventional business data processing. The fact that
a software system must process and react to
continual inputs from many sources (e.g., sensors)
rather than from human operators requires one to
rethink the fundamental architecture of a DBMS for
this application area. In this paper, we present
Aurora, a new DBMS that is currently under
construction at Brandeis University, Brown
University, and M.LT. We describe the basic
system architecture, a stream-oriented set of
operators, optimization tactics, and support for real-
time operation.

1 Introduction

Traditional DBMSs have been oriented toward business
data processing, and consequently are designed to address
the needs of these applications. First, they have assumed
that the DBMS is a passive repository storing a large
collection of data elements and that humans initiate queries
and transactions on this repository. We call this a Human-
Active, DBMS-Passive (HADP) model. Second, they have
assumed that the current state of the data is the only thing
that is important. Hence, current values of data elements
are easy to obtain, while previous values can only be found
torturously by decoding the DBMS log. The third
assumption is that triggers and alerters are second-class
citizens. These constructs have been added as an after
thought to current systems, and none have an
implementation that scales to a large number of triggers.
Fourth, DBMSs assume that data elements are
synchronized and that queries have exact answers. In man
2 TR ATITR

data arrives y

+ This work was supported by the National Science Foundation under
NSF Grant number 1100-86057 and a gift from Sun Microsystems

Permission to copy without fee all or part of this material is granted
provided that the copies are not made o distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or fo republish,
requires a fee and/or special permission from the Endowment
Proceedings of the 28" VLDB Conference,

Hong Kong, China, 2002

require no real-time services.
There is a substantial class of applications where all five
assumptions are problematic. Monitoring applications are
ications that monitor i streams of data. This
class of applications includes military applications that
monitor readings from sensors womn by soldiers (e.g., blood
pressure, heart rate, position), financial analysis
applications that monitor streams of stock data reported
from various stock exch and tracking icati
that monitor the locations of large numbers of objects for
1 ity

which they are responsible (e.g.,

that must monitor the location of borrowed equipment).
Because of the high volume of monitored data and the
query requirements for these applications, monitoring
applications would benefit from DBMS support. Existing
DBMS systems, however, are ill suited for such
applications since they target business applications.

First, monitoring applications get their data from
external sources (e.g., sensors) rather than from humans
issuing transactions. The role of the DBMS in this context
is to alert humans when abnormal activity is detected. This
is a DBMS-Active, Human-Passive (DAHP) model.

Second, monitoring  applications  require  data
management that extends over some history of values
reported in a stream, and not just over the most recently
reported values. Consider a monitoring application that
tracks the location of items of interest, such as overhead
transparency projectors and laptop computers, using
electronic property stickers attached to the objects. Ceiling-
mounted sensors inside a building and the GPS system in
the open air generate large volumes of location data. If a
reserved overhead projector is not in its proper location,
then one might want to know the geographic position of the
missing projector. In this case, the last value of the
monitored object is required. However, an administrator
might also want to know the duty cycle of the projector,
thereby requiring access to the entire historical time series.

Third, most itori icati are trigg iented.
If one is monitoring a chemical plant, then one wants to
alert an operator if a sensor value gets too high or if another
sensor value has recorded a value out of range more than
twice in the last 24 hours. Every application could
potentially monitor multiple streams of data, requesting
alerts if complicated conditions are met. Thus, the scale of

(& RisingWavelabs
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Why Stream Processir~"

Monitoring Streams — A New Class of Data M

Don Carney Ugur Cetintemel Mitch

Brown University Brown University Brande
dpc@cs.brown.edu ugur@cs.brown.edu mfe@cs
Sangdon Lee Greg Seid Michael
Brown University Brown University M.LT.
sdlee@cs.brown.edu gss@es.brown.edu stonebraker@lcs.mit.edu

and answer

information.

Abstract require no re:

This paper introduces monitoring applications, Thcn:lisza
which we will show differ substantially from assumptions
conventional business data processing. The fact that applications 1
a software system must process and react to class of app
continual inputs from many sources (e.g., sensors) monitor readi
rather than from human operators requires one to pressure, h
rethink the fundamental architecture of a DBMS for applications
this application area. In this paper, we present from various
Aurora, a new DBMS that is currently under that monitor
construction at Brandeis University, Brown which they a
University, and M.LT. We describe the basic that must m
system architecture, a stream-oriented set of Because of 1
operators, optimization tactics, and support for real- query requi
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sensor value has recorded a value out of range more than
twice in the last 24 hours. Every application could
potentially monitor multiple streams of data, requesting
alerts if complicated conditions are met. Thus, the scale of
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Batch Processing vs. Stream Processing

User-initiated computation Event-driven computation
Full computation Incremental computation

Batch processing Stream processing
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Batch Processing vs. Stream Processing

Complete data accessible in Continuously arriving,
persistent storage possibly unbounded data
-
L f OOEEIIIJIV — 7
) g
write
[1,4,5,23,8,0,7] » We cannot store the entire stream
: » No control over arrival rate or
median
order

|

5
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Batch Processing vs. Stream Processing

@ ] — actions, alerts
¢ >

continuous analytics
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Stream Processing Use Cases

— ™
» ol
Ads recommendation I :
' Travel booking
= ==
@ Stock dashboarding ML training ﬁ I
a Network monitoring
| Data science
High-frequency trading -H Dellvery app '_'"
Fraud detection Inventory tracking Accounting
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Stream Processing Use Cases

 Financial services

« Payment services
* Fraud detection

« Capital markets (brokerage, hedge fund)
« Compliance, risk control, pre-trade analytics, ...
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Stream Processing Use Cases

* Entertainment
» Gaming
« Sports betting
e Publisher
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Stream Processing Use Cases

For you
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McConnell and Larson's Health Episodes
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Removed
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Show more
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Stream Processing Use Cases

e E-commerce
* Personalized recommendation
* Price comparison
* Fraud detection
* Churn prevention and prediction
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Stream Processing Use Cases
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Stream Processing Use Cases

* Energy and manufacturing
* Logistics
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Stream Processing Use Cases

* Energy and manufacturlng
* Logistics
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History of Stream Processing Systems

2000 2005 2010 2015 2020
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History of Stream Processing Systems

Research prototypes

e e e e o e e

STREAM
NiagaraCQ
Aurora

Borealis

e e =
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History of Stream Processing Systems

Research prototypes
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History of Stream Processing Systems
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History of Stream Processing Systems

Research prototypes
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History of Stream Processing Systems
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History of Stream Processing Systems

 Trend: Single node -> distributed -> cloud
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Stream Processing Concepts (Boring Part!)
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Stream Processing Concepts

* |n traditional data processing applications, we know the entire
dataset in advance, e.g. tables stored in a database.
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Stream Processing Concepts

* |n traditional data processing applications, we know the entire
dataset in advance, e.g. tables stored in a database.

« A data stream Is a data set that is produced incrementally over
time, rather than being available in full before its processing
begins.
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Stream Processing Concepts

* |n traditional data processing applications, we know the entire
dataset in advance, e.g. tables stored in a database.

« A data stream Is a data set that is produced incrementally over
time, rather than being available in full before its processing
begins.

« Data streams are high-volume, real-time data that might be
unbounded
« We cannot store the entire stream in an accessible way
« we have to process stream elements on-the-fly using limited memory
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Properties of Data Streams

* They arrive continuously instead of being available a-priori.
* They bear an arrival and/or a generation timestamp.

* They are produced by external sources, I.e. the DSMS has no
control over their arrival order or the data rate.

* They have unknown, possibly unbounded length, i.e. the DSMS
does not know when the stream ends.
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Two Important Concepts

* Time Windowing
« Perform computation over a subset of data

« Watermark
 Make sure order is guaranteed
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Time Windowing

« Data streams never end. We may want to compute on a subset
of data.

| Stream of Data Window of Data |
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® ©0e e eceee

Time B
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Time Windowing

* Three types of windows

Fixed Window (aka Tumbling
Window) - eviction policy always

based on the window being full and

trigger policy based on either the
count of items in the window or

time
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Sliding Window (aka Hopping
Window) - uses eviction and
trigger policies that are based on
time: window length and sliding
interval length
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Session Window — composed of
sequences of temporarily related
events terminated by a gap of
inactivity greater than some
timeout
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Watermarks

e Let’s talk about time first...

* Event time
 the time at which events actually occurred

* |ngestion time / processing time
* The time at which events are ingested into / processed by the system

1 2 3 4 5
Clock

Event Time

Ingestion Time

Processing Time
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Watermarks

* |t's likely that events are ingested into / processed by the
system in an random order

* How to guarantee order? Well, let’'s use watermarks..

Event-time

skew .,

7
7/

. S —
Processing- ’
time lag I e
/7
Reality &)
(~= watermark)

7
7
7
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Coding!

Research prototypes
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MapReduce!

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram'’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds of MapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.

Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance
measurements of our implementation for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis
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Revisiting MapReduce

» Scale computation in commodity machines
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Revisiting MapReduce

» Scale computation in commodity machines

 |deas:
Reduce()
* Expose low-level APIs nut output
 Give up control over storage Reduce()
“live and let live”
textStream _ _ (( ¢ “
.flatMap { .split("\\W+")} “live” “and” “let” “live” (\
map {(_, 1)} (live,1) (and,1) (let, 1) (live,1) of ( g
.keyBy (0) ‘( (
.sum(1) .
.print () ( \
(”VL) Compute Storage
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Revisiting MapReduce

sk

Streaming
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Revisiting MapReduce
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Why Switched Back to SQL Databases?

e Cost! Cost! Cost!
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Revisiting MapReduce

» Scale computation in commodity machines

* |deas:
* Expose low-level APIs
 Glve up control over storage

Input

Compute

Reduce()

Reduce()

§> Output

Storage

@ RisingWavelabs
68



Revisiting MapReduce

» Scale computation in commodity machines

* |deas:
* Expose low-level APIs
 Glve up control over storage

* Tradeoff:
 Learning curve
* Efficiency
* Development difficulty
« Data stack complexity

Input

Compute

Reduce()

§> Output

Storage
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Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces

Table API

DataStream / DataSet API

Stateful Stream Processing

High-level Language

Declarative DSL

Core APIs

Low-level building block

(streams, state, [event] time)
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Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces

* Efficiency
« Hard to get optimal efficiency
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Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces
* Efficiency
« Hard to get optimal efficiency

Query
l ’

7 7 _
0 » | — 'I Execution plan
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Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces

* Efficiency
« Hard to get optimal efficiency

O

Query |)

—/  Execution plan
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Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces

* Efficiency
« Hard to get optimal efficiency

» Development difficulty

* Difficult to verify correctness
Streaming job1

Streaming job2
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Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces

* Efficiency
« Hard to get optimal efficiency

» Development difficulty
* Difficult to verify correctness

« Data stack complexity
 “Bring your own storage”
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Limitations of Stream Processing Engines

« Streaming analytics
« Monitoring, alerting, automation, etc...

OLTP databases Bl dashboards
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Streaming Databases

 Get the best of both worlds!

- I
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N
Stream processing Database
9 engine /

Streaming Database
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Streaming Databases

 Learning curve

»
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Streaming Databases

 Learning curve
» System-specific interfaces » Standard SQL!

* Efficiency
» Hard to get optimal efficiency » Highly efficient!
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Streaming Databases

 Learning curve
» System-specific interfaces » Standard SQL!
* Efficiency
» Hard to get optimal efficiency » Highly efficient!

* Development difficulty
» Difficulty to verify correctness » Composable code!
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Streaming Databases

 Learning curve
» System-specific interfaces » Standard SQL!
* Efficiency
» Hard to get optimal efficiency » Highly efficient!

* Development difficulty
» Difficulty to verify correctness » Composable code!

« Data stack complexity
* “Bring your own storage” » One single system!
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Streaming Databases In Production

« Streaming analytics
« Monitoring, alerting, automation, etc...
OLTP databases Bl dashboards

[ My b .mongoDBn ] A ©0 Stiperset Metabase
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Streaming Databases In Production

« Streaming analytics

create materialized view my_mv as

¢ MOnltOrlng, alertlng, aUtOmathn, etC select count(x) from Customers
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State Management (Deeply Technical)
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State Management
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State Management

e Supporting stateful computations can be very challenging
« Computation logics can be complicated
e Streaming data workload may fluctuate

N ) oms

\/ 0, /"»

Stream processing systems

040
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State Management

« Consider joining two data streams

* Impression stream How to manage internal states?
e Click streeam = - ________ \

I{Hash table for impression stream i

Impression (adld, impressionTime} State |

/J
l Output (adld, impressionTime, clickTime)

oS EEm EEm EE B S N S S EE O D D D e ey

Click (adld, clickTimd) —
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State Management

« Consider joining two data streams
* Impression stream How to manage internal states?

e Click stream = = - e e — - - \
I{Hash table * ‘ream |

' State I
Impression (adld, impressionTime} |
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State Management

« Joining multiple data streams can be much harder than joining
two data streams
[ join ]

[ join ] [ orders ]

[ join ] [partsupp J

[ join | [ supplier |

[ sl ] [ part ] @ RisingWavelabs
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State Management: MapReduce-Style

 MapReduce style
« Compute-storage coupled

CI m Streaming
Db &8km

m SdMZd
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State Management: MapReduce-Style

 MapReduce style
« Compute-storage coupled

CI - m State Streaming
B> ik

EI State
SdMZa
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State Management: MapReduce-Style

 MapReduce style
« Compute-storage coupled

State

Streaming

State
52) APACHE
STORM

State

g B
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State Management: MapReduce-Style

 MapReduce style
« Compute-storage coupled

State

Streaming

State
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STORM

State
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State Management: MapReduce-Style

» MapReduce style u l |
« Compute-storage 4y y 2

B @@

M

L] s samza
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State Management in the Cloud Era

 Cloud-native style
« Compute-storage decoupled

Compute (e.g., EC2)

AWS/GCP/Azure

Storage (e.g., S3) « RisingWavelabs
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State Management in the Cloud Era

 Cloud-native style
« Compute-storage decoupled

it
-

Compute (e.g., EC2)

AWS/GCP/Azure

State
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State Management in the Cloud Era

 Cloud-native style
« Compute-storage decoupled

it
-

Compute (e.g., EC2)

AWS/GCP/Azure

State
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State Management in the Cloud Era

 Cloud-native style
« Compute-storage decoupled

AWS/GCP/Azure

State

Storage (e.g., S3) « RisingWavelabs
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State Management in the Cloud Era

« Consider joining two data streams
* Impression stream

 Click stream
Hash table for impression stream

Impression (adld, impressionTime) State
» Output (adld, impressionTime, clickTime)

Click (adld, clickTime)

State

Hash table for click stream (C RisingWavelabs
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State Management in the Cloud Era

« Consider joining two data streay /s
* Impression stream

e Click stream
sion stream

Impression (adld, impressionTime) State
gig ¢ Output (adld, i sionTime, clickTime)
» ( ‘
e
s ¢
- ¢
( |

Click (adld, clickTime)
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State Management in the Cloud Era

« Consider joining two data streay /s
* Impression stream
 Click stream

Hash table * “ream

Impression (adld, impressionTime)

Output (adld, i sionTime, clickTime)
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State Management in the Cloud Era

« Consider joining two data streay /s
* Impression stream
 Click stream

Hash table * “ream

Impression (adld, impressionTime)

Output (adld, i sionTime, clickTime)
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State Management: Comparison
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State Management: Comparison
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State Management: Failure Recovery

ook 5D &k (2 RisingWave

! |:||nk Streaming
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State Management: Elastic Scaling
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Summary

e Stream processing systems continuously perform incremental
computations as new events arrive

» Key concepts: events, time windowing, watermark, ...
* Single node -> distributed -> cloud
« State management is critical in stream processing systems!
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