An Introduction to
Stream Processing and Streaming Databases

Yingjun Wu

RisingWave Labs *
=2 risingwave.com/slack




-
Who Am [?

* Yingjun Wu (he/him/his)
* Founder @RisingWave Labs
* EX-AWS Redshift
* Ex-IBM Research Almaden
* PhD'17, SoC, NUS

(& RisingWavelabs
2



-
Who Am [?

* Yingjun Wu (he/him/his)
* Founder @RisingWave Labs
* EX-AWS Redshift
* Ex-IBM Research Almaden
* PhD'17, SoC, NUS

(& RisingWavelabs
3



p
Why Stream Processing?

@ RisingWavelabs



-

Stock Trading Example

« How traditional databases work?

Timestamp Symbol Price
2025-02-08 09:30:01 AAPL 150.25
2025-02-08 09:30:02 AAPL 150.30
2025-02-08 09:30:03 AAPL 150.10
2025-02-08 09:30:04 TSLA 780.50
2025-02-08 09:30:05 TSLA 780.75
2025-02-08 09:30:06 AAPL 150.00
30:07 GOOG 2750.10
30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

@ RisingWavelabs



-

Stock Trading Example

« How traditional databases work?

Timestamp
2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

Price

150.25

150.30

150.10

780.50

780.75

150.00

2750.10

2751.50

781.00

149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

symbol in the dataset.

Calculate the total traded volume for each

@ RisingWavelabs



-

Calculate the total traded volume for each
symbol in the dataset.

Stock Trading Example

* -

Ti Volume
SELECT Symbol, SUM(Volume) AS TotalVolume
FROM Trades

GROUP BY Symbol;

2( 300

2( 200
2( 500

2( . 100

2025-02-08 09:30:0 150
2025-02-08 09:30:06 AAPL 150.00 250
30:07 GOO0G 2750.10 400
30:08 GOOG 2751.50 300
30:09 TSLA 781.00 600
30:10 AAPL 149.95 200

Real-time stock market data

@ RisingWavelabs
7



/

Stock Trading Example

« How traditional databases work?

Timestamp
2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

Price

150.25

150.30

150.10

780.50

780.75

150.00

2750.10

2751.50

781.00

149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

Calculate the total traded volume for each
symbol in the dataset.

What is the average trade price for TSLA
between 09:30:04 and 09:30:09°

@ RisingWavelabs



/

Stock Trading Example

« How traditional databases work?

Timestamp
2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

Price

150.25

150.30

150.10

780.50

780.75

150.00

2750.10

2751.50

781.00

149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

Calculate the total traded volume for each
symbol in the dataset.

What is the average trade price for TSLA
between 09:30:04 and 09:30:09°

Which trade(s) had the largest single-
trade volume in the dataset?

@& RisingWavelabs



/

Stock Trading Example

« How traditional databases work?

Timestamp Symbol Price
2025-02-08 09:30:01 AAPL 150.25
2025-02-08 09:30:02 AAPL 150.30
2025-02-08 09:30:03 AAPL 150.10
2025-02-08 09:30:04 TSLA 780.50
2025-02-08 09:30:05 TSLA 780.75
2025-02-08 09:30:06 AAPL 150.00
30:07 GOOG 2750.10
30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Ad-hoc queries, or “exploratory queries”

Volume

300

200

500

100

150

250

400

300

600

200

Calculate the total traded volume for each
symbol in the dataset.

What is the average trade price for TSLA
between 09:30:04 and 09:30:09°

Which trade(s) had the largest single-
trade volume in the dataset?

@ RisingWavelabs



-

Stock Trading Example

« How traditional databases work?

Timestamp
2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Ad-hoc queries, or “exploratory queries”

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

Price
150.25
150.30
150.10
780.50
780.75
150.00
2750.10
2751.50
781.00

149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

Ask

Answer

@ RisingWavelabs
11



-

Stock Trading Example

* How about doing monitoring?

Timestamp Symbol Price
2025-02-08 09:30:01 AAPL 150.25
2025-02-08 09:30:02 AAPL 150.30
2025-02-08 09:30:03 AAPL 150.10
2025-02-08 09:30:04 TSLA 780.50
2025-02-08 09:30:05 TSLA 780.75
2025-02-08 09:30:06 AAPL 150.00
30:07 GOOG 2750.10
30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

@ RisingWavelabs



-

Stock Trading Example

* How about doing monitoring?

Timestamp Symbol Price
2025-02-08 09:30:01 AAPL 150.25
2025-02-08 09:30:02 AAPL 150.30
2025-02-08 09:30:03 AAPL 150.10
2025-02-08 09:30:04 TSLA 780.50
2025-02-08 09:30:05 TSLA 780.75
2025-02-08 09:30:06 AAPL 150.00
30:07 GOOG 2750.10
30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

seconds.

Every second, calculate the average trade
price for each symbol in the last 10

@ RisingWavelabs



-

Stock Trading Example

* How about doing monitoring?

Timestamp

2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04

2025-02-08 09:30:05

2025-02-08 09:30:06

30:07

30:08

30:09

30:10

Every second, calculate the average trade
price for each symbol in the last 10
seconds.

Symbol Price Volume

00 ' /\E;L(

SELECT symbol, AVG(price) AS aveg_price

FROM trades
WHERE event_time = NOW() - INTERVAL 10 SECOND
GROUP BY symbol;

GOOG 2751.50 300 An Swer
TSLA 781.00 600
AAPL 149.95 200

Real-time stock market data
@ RisingWavelabs
14



-

Stock Trading Example

* How about doing monitoring?

Timestamp Symbol Price

2025-02-08 09:30:01
o000
2025-02-08 09:30:02

2025-02-08 09:30:03

SELECT symbol, AVG(price) AS aveg_price

FROM trades
WHERE event_time =
GROUP BY symbol;

2025-02-08 09:30:04

2025-02-08 09:30:05

2025-02-08 09:30:06

30:07

30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Every second, calculate the average trade
price for each symbol in the last 10
seconds.

Volume

TSLA Avg Price

Update Time GOOG Avg Price

AAPL Avg Price

NOW() - INTERVAL 10 SECOND

300
600

200

@ RisingWavelabs
15



-

Stock Trading Example

* How about doing monitoring?

Timestamp Symbol Price

2025-02-08 09:30:01
o000
2025-02-08 09:30:02

2025-02-08 09:30:03

SELECT symbol, AVG(price) AS aveg_price

FROM trades
WHERE event_time =
GROUP BY symbol;

2025-02-08 09:30:04

2025-02-08 09:30:05

2025-02-08 09:30:06

30:07

30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Volume

Every second, calculate the average trade
price for each symbol in the last 10
seconds.

Trigger query!

GOOG Avg Price

Update Time AAPL Avg Price TSLA Avg Price

09:30:07 150.16 780.625 2750.10

NOW() - INTERVAL 10 SECOND

300
600

200

@ RisingWavelabs
16



-

Stock Trading Example

* How about doing monitoring?

Timestamp Symbol Price

2025-02-08 09:30:01
o000
2025-02-08 09:30:02

2025-02-08 09:30:03

SELECT symbol, AVG(price) AS aveg_price

2025-02-08 09:30:04 SIS

WHERE event_time = NOW() - INTERVAL 10 SECOND

2025-02-08 09:30:05 [STISESVEpUPIC

2025-02-08 09:30:06

30:07

30:08 GOOG 2751.50
30:09 TSLA 781.00
30:10 AAPL 149.95

Real-time stock market data

Volume

300

600

200

Every second, calculate the average trade
price for each symbol in the last 10
seconds.

Trigger query!

Trigger query!. , , _
Update Time AAPL Avg Price TSLA Avg Price GOOG Avg Price
09:30:07 150.16 780.625 2750.10
09:30:08 150.16 780.625 2750.80

@ RisingWavelabs
17



-

Every second, calculate the average trade
price for each symbol in the last 10
seconds.

Stock Trading Example

* How about doing monitoring?

] I
Timestamp Symbol Price Volume T”gger query-
.an- ] |
2025-02-08 09:30:01 Y X ) Trlgger qU,%Qénme AAPL Avg Price TSLA Avg Price GOOG Avg Price
2025-02-08 09:30:02 Trigger qgf@pyj 150.16 780.625 2750.10
. ) . 09:30:08 150.16 780.625 2750.80
PAWASSUPROLRWERCMIRY  SE| ECT symbol, AVG(price) AS aveé_price
09:30:09 150.16 78075 2750.80

2025-02-08 09:30:04 [IEENUNERS IR
WHERE event_time = NOW() - INTERVAL 10 SECOND

2025-02-08 09:30:05 [STISESVEpUPIC

2025-02-08 09:30:06

30:07

30:08 GOOG 2751.50 300
30:09 TSLA 781.00 600
30:10 AAPL 149.95 200

Real-time stock market data
@ RisingWavelabs
18



-

Stock Trading Example

seconds.

* How about doing monitoring?

1 I

Timestamp Symbol Price Volume T”gger query-

~02-08 09:30: Trigger L
2025-02-08 09:30:01 [NEPAPN gger QUL rime

2025-02-08 09:30:02 Trigger qoEry!

09:30:08

PAUZCROPAERUERCREY  SE| ECT symbol, AVG(price) AS ave_price Trigger query!

2025-02-08 09:30:04 [IEENUNERS IR
WHERE event_time = NOW() - INTERVAL 10 SECOND

GROUP BY symbol;

09:30:10

2025-02-08 09:30:05

2025-02-08 09:30:06

30:07

30:08 GOOG 2751.50 300
30:09 TSLA 781.00 600
30:10 AAPL 149.95 200

Real-time stock market data

AAPL Avg Price

150.16

150.16

150.16

150.12

Every second, calculate the average trade
price for each symbol in the last 10

TSLA Avg Price
780.625
780.625

780.75

780.75

GOOG Avg Price

2750.10

2750.80

2750.80

2750.80

@ RisingWavelabs

19



-

bol in the last 10

Stock Trading Ex{EE = Eam—s e the average o

public ¢

onne detail
"jdbc:postgresql

« How about doing moniiEasEs e

"SELECT symbol, AVG(price) AS avg_pr
"FROM trades " +

"WHERE event_tim now() - interval '10
"GROUP BY symbo

Timestamp Symbol

publ static void
1. Establish a databa nnection (ideally once, or use a connection pool).

. . . try (Connection connection = DriverManager.getConnection(JDBC_URL, DB_USER, DB_PASSWORD)) { i TSLA Avg Price GOOG Avg Price

System.out.println("Connected to PostgreSQL database!");

2025-02-08 09:30:01

2025_02_08 093002 Set up a scheduled task to run every 1 second. 780'625 2750'10

eduledExecutorService executor = Executors.newSingleThreadScheduledExecutor();

CHERE Sc el c 780.625 2750.80
executor.scheduleAtFixedRate(() — {
2025—02—08 09'3003 S ELECT Symbo-l_ AVG ( price ) queryAndPrintAveragePrice(connection);

4 }, ©, 1, TimeUnit.SECONDS); 780.75 2750.80

2025—02—08 09'3004 FROM trades Keep the pro m runr (for demo purposes).
WHERE EVEHt_time ;_)-:_ NOW() In a real ,‘_?U.‘,d{!mdw u : n acefully.

GROUP BY symbol;

780.75 2750.80
2025-02-08 09:30:05

2025-02-08 09:30:06
30:07
30:08
30:09 v., s s : o ) . AGE PRICELUERTYS

;O’IO Average Price (Last 10s) =

Real-time stock mar K — :

@ RisingWavelabs
20



-

Stock Trading Exg&

public ¢

« How about doing monit

USEL:
"FRO
"WHE
"GRO

Timestamp Symbol

publ s

2025-02-08 09:30:01
o000

2025-02-08 09:30:02

PAPISRWVAJSUERRIRY  SE| ECT symbol, AVG(price)

2025-02-08 09:30:04 SIS
WHERE event_time = NOW()

2025-02-08 09:30:05 [STISESVEpUPIC

2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Real-time stock mark

Complex...

1

onne detail
"jdbc:postgresql

price for
ults in real time;

ECT symbol, AVG(price) AS avg_pr

M trades " +

RE event_tim now() - interval '10
UP BY symbo

tatic void

Establish a databa nnection (ideally once, or use a connection pool)

(Connection connection = DriverManager.getConnection(JDBC_URL, DB_USER, DB_PASSWORD)) { i TSLA Avg Price
System.out.println("Connected to PostgreSQL database!");

Set up a scheduled task to run every 1 seco

eduledExecutorService executor = Executors.newS

executor.scheduleAtFixedRate(() — {
queryAndPrintAveragePrice(connection);
}, ©, 1, TimeUnit.SECONDS);

Keep the pro m runr (for demo purposes)
In a real ou'd handle shut
f 1 inute, t

Average Price (Last 10s) =

780.625
gleThreadScheduledExecutor();

780.625
780.75

780.75

acefully.

AGE_PRICE_QUERY);

ulate the average trade
bol in the last 10

GOOG Avg Price

2750.10

2750.80

2750.80

2750.80

@ RisingWavelabs

21



Stock Trading Example

* How about doing monitoring?

Timestamp
2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
30:07
30:08
30:09

30:10

Complex... and inefficient!!

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

Price

150.25

150.30

150.10

780.50

780.75

150.00

2750.10

2751.50

781.00

149.95

Real-time stock market data

Volume

300

200

500

100

150

250

400

300

600

200

Query time

v

v

Full table scan

Data size

@ RisingWavelabs
22



-
Why Stream Processing?

 Challenges:
« Require humans (or programs) to repeatedly issue ad-hoc queries
« Have to perform full computation queries

@ RisingWavelabs



-

Why Stream Processing?

 Challenges:

« Require humans (or programs) to repeatedly issue ad-hoc queries

« Have to perform full computation queries

Timestamp

2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05

2025-02-08 09:30:06

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA

AAPL

Price

150.25

150.30

150.10

780.50

780.75

150.00

Volume

300

200

500

100

150

250

@ RisingWavelabs



p
Why Stream Processing?

 Challenges:

« Require humans (or programs) to repeatedly issue ad-hoc queries
« Have to perform full computation queries

Timestamp Symbol Price Volume
2025-02-08 09:30:01 AAPL 150.25 300
2025-02-08 09:30:02 AAPL 150.30 200
2025-02-08 09:30:03 AAPL 150.10 500
2025-02-08 09:30:04 TSLA 780.50 100
2025-02-08 09:30:05 TSLA 780.75 150
2025-02-08 09:30:06 AAPL 150.00 250
2025-02-08 09:30:07 GOOG 2750.10 400
2025-02-08 09:30:08 GOOG 2751.50 300
2025-02-08 09:30:09 TSLA 781.00 600
2025-02-08 09:30:10 AAPL 149.95 200

@ RisingWavelabs



-

Why Stream Processing?

* | et's do stream processing!

* Instead of letting users issue queries proactively...

Timestamp

2025-02-08 09:30:01
2025-02-08 09:30:02
2025-02-08 09:30:03
2025-02-08 09:30:04
2025-02-08 09:30:05
2025-02-08 09:30:06
2025-02-08 09:30:07
2025-02-08 09:30:08
2025-02-08 09:30:09

2025-02-08 09:30:10

Symbol
AAPL
AAPL
AAPL
TSLA
TSLA
AAPL
GOOG
GOOG
TSLA

AAPL

150.25

150.30

150.10

Volume

300

200

500

<

Send queries to databases

@ RisingWavelabs
26



p
Why Stream Processing?

* | et's do stream processing!
* Instead of letting users issue queries proactively...
| et databases push results to users!

Timestamp Symbol Price Volume
2025-02-08 09:30:01 AAPL 150.25 300
2025-02-08 09:30:02 AAPL 150.30 200
2025-02-08 09:30:03 AAPL 150.10 500
2025-02-08 09:30:04 TSLA

2025-02-08 09:30:05 TSLA

2025-02-08 09:30:06 AAPL

2025-02-08 09:30:07 GOOG

2025-02-08 09:30:08 GOOG

2025-02-08 09:30:09 TSLA

2025-02-08 09:30:10 AAPL Send I'eSUI'[S to users!

@ RisingWavelabs
27



Why Stream Processing?

* | et's do stream processing!

* Instead of letting users issue queries proactively...
| et databases push results to users!

* Require defining queries beforehand
« Computation is triggered by events

2025-02-08 09:30:01 AAPL 150.25 300 H ' .
SELECT
INTERVAL 1' SE ND, INTERVAL '1@"' NDS) vindow_start
! N[ L ‘10" ) ) yindow_end

Send results to users!

@ RisingWavelabs
28



Why Stream Processing?

Monitoring Streams — A New Class of Data Management Applications

Don Carney Ugur Cetintemel Mitch Cherniack Christian Convey
Brown University Brown University Brandeis University Brown University
dpe@cs.brown.edu ugur@ecs.brown.edu mfc@ecs.brandeis.edu cje@es.brown.edu
Sangdon Lee Greg Seid Michael brak Nesime Tatbul Stan Zdonik
Brown University Brown University M Brown University Brown University
sdlee@cs.brown.edu gss@cs.brown.edu k mit.edu bul@cs.brown. edu shz@es.brown.edu
and answers must be computed with incomplete
information. Lastly, DBMSs assume that applications
Abstract

This paper introduces monitoring applications,
which we will show differ substantially from
conventional business data processing. The fact that
a software system must process and react to
continual inputs from many sources (e.g., sensors)
rather than from human operators requires one to
rethink the fundamental architecture of a DBMS for
this application area. In this paper, we present
Aurora, a new DBMS that is currently under
construction at Brandeis University, Brown
University, and M.LT. We describe the basic
system architecture, a stream-oriented set of
operators, optimization tactics, and support for real-
time operation.

1 Introduction

Traditional DBMSs have been oriented toward business
data processing, and consequently are designed to address
the needs of these applications. First, they have assumed
that the DBMS is a passive repository storing a large
collection of data elements and that humans initiate queries
and transactions on this repository. We call this a Human-
Active, DBMS-Passive (HADP) model. Second, they have
assumed that the current state of the data is the only thing
that is important. Hence, current values of data elements
are easy to obtain, while previous values can only be found
torturously by decoding the DBMS log. The third
assumption is that triggers and alerters are second-class
citizens. These constructs have been added as an after
thought to current systems, and none have an
implementation that scales to a large number of triggers.
Fourth, DBMSs assume that data elements are
synchronized and that queries have exact answers. In man
2 TR ATITR

data arrives y

+ This work was supported by the National Science Foundation under
NSF Grant number 1100-86057 and a gift from Sun Microsystems

Permission to copy without fee all or part of this material is granted
provided that the copies are not made o distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or fo republish,
requires a fee and/or special permission from the Endowment
Proceedings of the 28" VLDB Conference,

Hong Kong, China, 2002

require no real-time services.
There is a substantial class of applications where all five
assumptions are problematic. Monitoring applications are
ications that monitor i streams of data. This
class of applications includes military applications that
monitor readings from sensors womn by soldiers (e.g., blood
pressure, heart rate, position), financial analysis
applications that monitor streams of stock data reported
from various stock exch and tracking icati
that monitor the locations of large numbers of objects for
1 ity

which they are responsible (e.g.,

that must monitor the location of borrowed equipment).
Because of the high volume of monitored data and the
query requirements for these applications, monitoring
applications would benefit from DBMS support. Existing
DBMS systems, however, are ill suited for such
applications since they target business applications.

First, monitoring applications get their data from
external sources (e.g., sensors) rather than from humans
issuing transactions. The role of the DBMS in this context
is to alert humans when abnormal activity is detected. This
is a DBMS-Active, Human-Passive (DAHP) model.

Second, monitoring  applications  require  data
management that extends over some history of values
reported in a stream, and not just over the most recently
reported values. Consider a monitoring application that
tracks the location of items of interest, such as overhead
transparency projectors and laptop computers, using
electronic property stickers attached to the objects. Ceiling-
mounted sensors inside a building and the GPS system in
the open air generate large volumes of location data. If a
reserved overhead projector is not in its proper location,
then one might want to know the geographic position of the
missing projector. In this case, the last value of the
monitored object is required. However, an administrator
might also want to know the duty cycle of the projector,
thereby requiring access to the entire historical time series.

Third, most itori icati are trigg iented.
If one is monitoring a chemical plant, then one wants to
alert an operator if a sensor value gets too high or if another
sensor value has recorded a value out of range more than
twice in the last 24 hours. Every application could
potentially monitor multiple streams of data, requesting
alerts if complicated conditions are met. Thus, the scale of

(& RisingWavelabs
29



-

Why Stream Processir~"

Monitoring Streams — A New Class of Data M

Don Carney Ugur Cetintemel Mitch

Brown University Brown University Brande
dpc@cs.brown.edu ugur@cs.brown.edu mfe@cs
Sangdon Lee Greg Seid Michael
Brown University Brown University M.LT.
sdlee@cs.brown.edu gss@es.brown.edu stonebraker@lcs.mit.edu

and answer

information.

Abstract require no re:

This paper introduces monitoring applications, Thcn:lisza
which we will show differ substantially from assumptions
conventional business data processing. The fact that applications 1
a software system must process and react to class of app
continual inputs from many sources (e.g., sensors) monitor readi
rather than from human operators requires one to pressure, h
rethink the fundamental architecture of a DBMS for applications
this application area. In this paper, we present from various
Aurora, a new DBMS that is currently under that monitor
construction at Brandeis University, Brown which they a
University, and M.LT. We describe the basic that must m
system architecture, a stream-oriented set of Because of 1
operators, optimization tactics, and support for real- query requi
time operation. applications
DBMS  syst

1 Introduction applications s
First, mol

Traditional DBMSs have been oriented toward business
data processing, and consequently are designed to address
the needs of these applications. First, they have assumed
that the DBMS is a passive repository storing a large

external sour
issuing trans:
is to alert hu

collection of data elements and that humans initiate queries ' ﬂsDB“ZS‘A'
and transactions on this repository. We call this a Human- :C:?m‘m
Active, DBMS-Passive (HADP) model. Second, they have . "gc dina
assumed that the current state of the data is the only thing cP"n d val
that is important. Hence, current values of data elements Toposiec. et
i % : . tracks the loi

are easy to obtain, while previous values can only be found
transparency

torturously by decoding the DBMS log. The third
assumption is that triggers and alerters are second-class
citizens. These constructs have been added as an after

electronic prc
mounted sen:

thought to current systems, and none have an the open’air
5 8 . reserved ove
implementation that scales to a large number of triggers. e

then one mig|

Fourth, DBMSs assume that data elements are
synchronized and that queries have exact answers. In many
stream-oriented applications, data arrives asynchronously

missing proj
monitored ot
might also w
thereby requi

Third, mos
Permission to copy without fee all or part of this material is granted |f one is mo
provided that the copies are not made or distributed for direct commercial g1 ort an opers

+ This work was supported by the National Science Foundation under
NSF Grant number 11S00-86057 and a gift from Sun Microsystems.

1 Introduction

Traditional DBMSs have been oriented toward business
data processing, and consequently are designed to address
the needs of these applications. First, they have assumed
that the DBMS is a passive repository storing a large
nllection of data elements and that humans initi Ts
and transactions on this repository. We call this a Human-
Active, DBMS-Passive (HADP) model. Second, they have

d UITIC( d - UITC LdLlC

11141C (1T

(ldld [1C U Y 1%
that is important. Hence, current values of data elements
are easy to obtain, while previous values can only be found
torturously by decoding the DBMS log. The third
assumption is that triggers and alerters are second-class
citizens. These constructs have been added as an after
thought to current systems, and none have an
implementation that scales to a large number of triggers.
Fourth, DBMSs assume that data elements are
synchronized and that queries have exact answers. In many
stream-oriented applications, data arrives asynchronously

advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment
Proceedings of the 28" VLDB Conference,

Hong Kong, China, 2002

sensor value has recorded a value out of range more than
twice in the last 24 hours. Every application could
potentially monitor multiple streams of data, requesting
alerts if complicated conditions are met. Thus, the scale of

@ RisingWavelabs
30



-

Batch Processing vs. Stream Processing

User-initiated computation Event-driven computation
Full computation Incremental computation

Batch processing Stream processing

@ RisingWavelabs
31



p
Batch Processing vs. Stream Processing

Complete data accessible in Continuously arriving,
persistent storage possibly unbounded data
-
L f OOEEIIIJIV — 7
) g
write
[1,4,5,23,8,0,7] » We cannot store the entire stream
: » No control over arrival rate or
median
order

|

5

@ RisingWavelabs
32



p
Batch Processing vs. Stream Processing

@ ] — actions, alerts
¢ >

continuous analytics

@ RisingWavelabs
33



-

Stream Processing Use Cases

— ™
» ol
Ads recommendation I :
' Travel booking
= ==
@ Stock dashboarding ML training ﬁ I
a Network monitoring
| Data science
High-frequency trading -H Dellvery app '_'"
Fraud detection Inventory tracking Accounting

— — — ————

us ms sec min hour day

— (C RisingWavelabs
34



Stream Processing Use Cases

 Financial services

« Payment services
* Fraud detection

« Capital markets (brokerage, hedge fund)
« Compliance, risk control, pre-trade analytics, ...

@& RisingWavelabs



Stream Processing Use Cases

* Entertainment
» Gaming
« Sports betting
e Publisher

@ RisingWavelabs



Stream Processing Use Cases

For you

 Entertainment s

[ ] Gamlng n-:‘ Elon Musk & x
 Sports betting
 Publisher

\

1 Wall Street Apes &

Upgrade to Premium+

Enjoy additional benefits, zero ads and the
largest reply prioritization.

Upgrade to Premium+

Explore

Elon Musk's $97.4 Billion OpenAl Bid
Rejected by Sam Altman

"

FBI Reveals Hidden JFK Records Post
Trump's Order

an

McConnell and Larson's Health Episodes
Stir Ageism Debate

Google Calendar Updates: Cultural Events
Removed

3R

Show more

@& RisingWavelabs



-
Stream Processing Use Cases

e E-commerce
* Personalized recommendation
* Price comparison
* Fraud detection
* Churn prevention and prediction

@ RisingWavelabs



p
Stream Processing Use Cases

Deliver to Yingjun . Hello, Yingjun Returns \0 /
P E C O m m e rC e CULGY A UBEOPSRp A TR 2 - Scarch Amazon - Account&Lists~ &Orders Y Cart
-_—

= Al m Same-Day Delivery Medical Care ~ Baby Registry Amazon Basics Groceries ~ Keep Shopping For Pharmacy ~ Handmade Household, Health & Baby Care

* Personalizec
_ Built for all seasons
® :)rlce Compa < eero OQutdoor7 >

* Fraud detec y
. C h u rn p reve Pick up where your Feft off Keep shopping for Buy again Shop Today's Deals

. L‘ w%r See all deals i
E=a 89 ,
1] f==== =
| et o 00

— —

= e :
REIBII Garage Shelvin... REIBII Garage Shelvin... Light bulbs Car speakers
1 viewe d 1 viewed
» e —

@ RisingWavelabs
39



Stream Processing Use Cases

* Energy and manufacturing
* Logistics

@ RisingWavelabs



Stream Processing Use Cases

* Energy and manufacturlng
* Logistics

O e 5 1 AW A (RN

.v'!"'T*"-:"’i‘ —-

‘ ‘“J!ll --rnq; —

(& RisingWavelabs
41



-
History of Stream Processing Systems

2000 2005 2010 2015 2020

@& RisingWavelabs



/

History of Stream Processing Systems

Research prototypes

e e e e o e e

STREAM
NiagaraCQ
Aurora

Borealis

e e =

@ RisingWavelabs



-

History of Stream Processing Systems

Research prototypes

T \

. STREAM |

I I

i NiagaraCQ i

: Aurora : MSQi‘_ Server

el

|\ Borealis | ORACLE
® ® ® ® ®
2000 2005 2010 2015 2020

@ RisingWavelabs



p
History of Stream Processing Systems

i STORM

i’ STREAM \i

i NiagaraCQ i \%

i Aurora i SQL Server

Borealis | o o SAL

\ o /
® ® ® ® ® :
2000 Tzoos 2010 2015 2020

MapReduce

@ RisingWavelabs

(2004) j




p
History of Stream Processing Systems

Research prototypes
(T T T \
| |
ST Beave.
| | ksqlDB
' NiagaraCQ | B 5dImnZa e Cloud
: : L« DataFlow
: Aurora : SQL Server J‘Z
| B I | S 4 distributed stream Spark
|\ orealis | ORACLE computing platform  Strea@ming
® ® ® ® ® >
2000 12005 2010 2015 2020
MapReduce

@ RisingWavelabs

(2004) i




-

History of Stream Processing Systems

‘ [J [J
Research prototypes ((\k Risi ng Wave
T \
| |
| STREAM | bytewax
| NiagaraCQ | )ics >dimnZa e Cloud o
| . Dataflow N Materialize
: Aurora : SQL Server J‘g
| el | S 4 distributed stream Spark ‘ .
|\ _______ | > —//I ORACLE computing platform Streamlng E u I x A v royo
® ® ® ® ® >
2000 12005 2010 2015 2020
MapReduce

@ RisingWavelabs

(2004) "




-
History of Stream Processing Systems

 Trend: Single node -> distributed -> cloud

@ RisingWavelabs



-
Stream Processing Concepts (Boring Part!)

@ RisingWavelabs



-
Stream Processing Concepts

* |n traditional data processing applications, we know the entire
dataset in advance, e.g. tables stored in a database.

@ RisingWavelabs



Stream Processing Concepts

* |n traditional data processing applications, we know the entire
dataset in advance, e.g. tables stored in a database.

« A data stream Is a data set that is produced incrementally over
time, rather than being available in full before its processing
begins.

@& RisingWavelabs



Stream Processing Concepts

* |n traditional data processing applications, we know the entire
dataset in advance, e.g. tables stored in a database.

« A data stream Is a data set that is produced incrementally over
time, rather than being available in full before its processing
begins.

« Data streams are high-volume, real-time data that might be
unbounded
« We cannot store the entire stream in an accessible way
« we have to process stream elements on-the-fly using limited memory

@& RisingWavelabs



-
Properties of Data Streams

* They arrive continuously instead of being available a-priori.
* They bear an arrival and/or a generation timestamp.

* They are produced by external sources, I.e. the DSMS has no
control over their arrival order or the data rate.

* They have unknown, possibly unbounded length, i.e. the DSMS
does not know when the stream ends.

@& RisingWavelabs



-
Two Important Concepts

* Time Windowing
« Perform computation over a subset of data

« Watermark
 Make sure order is guaranteed

@ RisingWavelabs



-
Time Windowing

« Data streams never end. We may want to compute on a subset
of data.

| Stream of Data Window of Data |

00000 000000
e0® 000 O ©
® ©0e e eceee

Time B

(& RisingWavelabs
55



-

Time Windowing

* Three types of windows

Fixed Window (aka Tumbling
Window) - eviction policy always

based on the window being full and

trigger policy based on either the
count of items in the window or

time

»
L

/
|

|

Time

e 00 00 000 0
00 0 00 O |

\
[\
|
|
|
|

)

Sliding Window (aka Hopping
Window) - uses eviction and
trigger policies that are based on
time: window length and sliding
interval length

Time >
("oo 0 o0 000 ¢ /|
o0 e © 060 O |
o0 |
| .O‘
@
’o ® ol
0o’
e
® e
‘..
— =
%
®

Session Window — composed of
sequences of temporarily related
events terminated by a gap of
inactivity greater than some
timeout

\

f

" @
o

®

®

@ RisingWavelabs
56



Watermarks

e Let’s talk about time first...

* Event time
 the time at which events actually occurred

* |ngestion time / processing time
* The time at which events are ingested into / processed by the system

1 2 3 4 5
Clock

Event Time

Ingestion Time

Processing Time

@ RisingWavelabs



p
Watermarks

* |t's likely that events are ingested into / processed by the
system in an random order

* How to guarantee order? Well, let’'s use watermarks..

Event-time

skew .,

7
7/

. S —
Processing- ’
time lag I e
/7
Reality &)
(~= watermark)

7
7
7

@ RisingWavelabs



Coding!

@ RisingWavelabs
59



-

Coding!

Research prototypes

o ———— — — — —

-~

Just SQL! Let’s do Java!
\

Just SQL and python!
A )

/

oACHE SFlink @< RisingWave
B> 5w C Rising

- STREAM | ksqlDB bytewax

Negacq | e

i rurora i B sorver . W Materialize

- Borealis | L Lt Pl :

o | ORACLE treoming =115 Arroyo
® ® ® ® ® >
2000 2005 2010 2015 2020

@ RisingWavelabs
60



p Why??2?
Just SQL! Let’s do Java! Just SQL and python!

Coding!
) A )

/ | [ A |

2 sencre @5Flink (& RisingWave

Research prototypes

STORM
__________ \ SN PIPELINEDB
STREAM bytewax
NiagaraCQ ) = >alliza b iali
k DataFlow  \Y| Materialize

o ————— e —— ———

|
|
|
|
|
|
I Microsoft® ‘
Aurora | SQL Server
|
|
|
|
)

B I S distributed stream SPQF’QZ ]
orealls ORACL E computing platform Streoming E LI A v royo
® ® ® ® ® g
2000 2005 2010 2015 2020

@ RisingWavelabs
61



MapReduce!

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram'’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds of MapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.

Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance
measurements of our implementation for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis

@ RisingWavelabs



p
Revisiting MapReduce

» Scale computation in commodity machines

@ RisingWavelabs
63



Revisiting MapReduce

» Scale computation in commodity machines

 |deas:
Reduce()
* Expose low-level APIs nut output
 Give up control over storage Reduce()
“live and let live”
textStream _ _ (( ¢ “
.flatMap { .split("\\W+")} “live” “and” “let” “live” (\
map {(_, 1)} (live,1) (and,1) (let, 1) (live,1) of ( g
.keyBy (0) ‘( (
.sum(1) .
.print () ( \
(”VL) Compute Storage
Ef’eﬁ :)1) @ RisingWavelabs
(I 64



p
Revisiting MapReduce

sk

Streaming

@ RisingWavelabs
65



Revisiting MapReduce

lzdacp N

(9Manhattan

TSAR

Computing Engine

== EHi . - Unified Pipeline
) [WScalding| | ® B 9o o
\ arget: sireaming U E) U ‘./
millions online/offline kps . = g & ﬁ- ﬁ-
@ samza Samza Cluster —
, Summingbird Platform Query Service . S"fgnlin?g ______________
3 deploy Batch -
singl
N e £ e -
[:i> ('-l HERON coebee ’ gy o
Millions eps Target: batch U EJ E/) t/J
¥ gU
\ / Consumer Consumer Spark Cluster
Services Services
Linked [T}
Streaming
Pipelines Network

Uber

000

Real-time

> Demand
Events

Real-time
s Supply
Events

‘&Flink

0-OO0

Pricing Service

Features
in KV
Store

Feature
Serving

@ RisingWavelabs

66



-
Why Switched Back to SQL Databases?

e Cost! Cost! Cost!

@ RisingWavelabs



Revisiting MapReduce

» Scale computation in commodity machines

* |deas:
* Expose low-level APIs
 Glve up control over storage

Input

Compute

Reduce()

Reduce()

§> Output

Storage

@ RisingWavelabs
68



Revisiting MapReduce

» Scale computation in commodity machines

* |deas:
* Expose low-level APIs
 Glve up control over storage

* Tradeoff:
 Learning curve
* Efficiency
* Development difficulty
« Data stack complexity

Input

Compute

Reduce()

§> Output

Storage

@ RisingWavelabs
69



-

Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces

Table API

DataStream / DataSet API

Stateful Stream Processing

High-level Language

Declarative DSL

Core APIs

Low-level building block

(streams, state, [event] time)

@ RisingWavelabs
70



Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces

* Efficiency
« Hard to get optimal efficiency

@& RisingWavelabs



Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces
* Efficiency
« Hard to get optimal efficiency

Query
l ’

7 7 _
0 » | — 'I Execution plan
Data ’

O pt imizer & RisingWaveLabs

72




Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces

* Efficiency
« Hard to get optimal efficiency

O

Query |)

—/  Execution plan

Data ’
O pt imizer & RisingWaveLabs

Gt




Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces

* Efficiency
« Hard to get optimal efficiency

» Development difficulty

* Difficult to verify correctness
Streaming job1

Streaming job2

@& RisingWavelabs

Streaming job3




Limitations of Stream Processing Engines

 Learning curve
« System-specific interfaces

* Efficiency
« Hard to get optimal efficiency

» Development difficulty
* Difficult to verify correctness

« Data stack complexity
 “Bring your own storage”

@& RisingWavelabs



p
Limitations of Stream Processing Engines

« Streaming analytics
« Monitoring, alerting, automation, etc...

OLTP databases Bl dashboards
[ My P\ PL .mongoDBn ] S OO0 Siiperset  :°.°: Metabase
Messaging queues 5 STORM' PostgreSQl_ mGrqfqnq +++1'+ +ableau
[§€ kafka Redpanda ZXxXpyLSAR |:> SdamZza |fl> /_»gu%cassandm <:> Client libraries
File systems @ . redis
, a Flink é =5 P ;__Go n\'dc
BN < £ -cones
Amazon S3 HORS]

@ RisingWavelabs
76



p
Streaming Databases

 Get the best of both worlds!

- I
3 g 0,
l( ! / p
2 ¢
(
N
Stream processing Database
9 engine /

Streaming Database

@ RisingWavelabs
77



p
Streaming Databases

 Learning curve

»

@ RisingWavelabs



-
Streaming Databases

 Learning curve
» System-specific interfaces » Standard SQL!

* Efficiency
» Hard to get optimal efficiency » Highly efficient!

(& RisingWavelabs
79



Streaming Databases

 Learning curve
» System-specific interfaces » Standard SQL!
* Efficiency
» Hard to get optimal efficiency » Highly efficient!

* Development difficulty
» Difficulty to verify correctness » Composable code!

(& RisingWavelabs
80



Streaming Databases

 Learning curve
» System-specific interfaces » Standard SQL!
* Efficiency
» Hard to get optimal efficiency » Highly efficient!

* Development difficulty
» Difficulty to verify correctness » Composable code!

« Data stack complexity
* “Bring your own storage” » One single system!

(& RisingWavelabs
81



p
Streaming Databases In Production

« Streaming analytics
« Monitoring, alerting, automation, etc...
OLTP databases Bl dashboards

[ My b .mongoDBn ] A ©0 Stiperset Metabase

PostgreSQL

Messaging queues I5Grafana 4 +ableau

(& RisingWave
> N Materialize <:> Client libraries

ksqlDB )
= ¢ nod
[ Angsa ‘F%an:daap ] a (___":"_,2 pl:’ thon m @

[§gkqfkq Redpanda ZXxpyULSAR

File systems

@ RisingWavelabs
82



-

Streaming Databases In Production

« Streaming analytics

create materialized view my_mv as

¢ MOnltOrlng, alertlng, aUtOmathn, etC select count(x) from Customers

OLTP databases

[ My ® mongoDB. ] &

PostgreSQL

Messaging queues

>

[§gkqfka Redpanda ZXxpyULSAR

File systems

o~ 3
[ N!g!LS ‘QEEEEEﬁHE", ]

( RisingWave
N Materialize

ksqlDB

group by country;

I9Grafana i +ablea UJ

Client libraries

= A =GO I'I\ide

<= python (8

@ RisingWavelabs
83



-
State Management (Deeply Technical)

@ RisingWavelabs



p
State Management

@ RisingWavelabs



-
State Management

e Supporting stateful computations can be very challenging
« Computation logics can be complicated
e Streaming data workload may fluctuate

N ) oms

\/ 0, /"»

Stream processing systems

040

@ RisingWavelabs
86



-
State Management

« Consider joining two data streams

* Impression stream How to manage internal states?
e Click streeam = - ________ \

I{Hash table for impression stream i

Impression (adld, impressionTime} State |

/J
l Output (adld, impressionTime, clickTime)

oS EEm EEm EE B S N S S EE O D D D e ey

Click (adld, clickTimd) —

—_—e— = =

I Hash table for click stream < RisingWavelabs



-
State Management

« Consider joining two data streams
* Impression stream How to manage internal states?

e Click stream = = - e e — - - \
I{Hash table * ‘ream |

' State I
Impression (adld, impressionTime} |

oy
c
ﬁ
()]
=
O
=
>
—~
Q
o
o
Q
=
>
—
3
— P
~
[ —

@ RisingWavelabs



-
State Management

« Joining multiple data streams can be much harder than joining
two data streams
[ join ]

[ join ] [ orders ]

[ join ] [partsupp J

[ join | [ supplier |

[ sl ] [ part ] @ RisingWavelabs




-
State Management: MapReduce-Style

 MapReduce style
« Compute-storage coupled

CI m Streaming
Db &8km

m SdMZd
@ RisingWavelabs

90




-

State Management: MapReduce-Style

 MapReduce style
« Compute-storage coupled

CI - m State Streaming
B> ik

EI State
SdMZa

@ RisingWavelabs
91



-

State Management: MapReduce-Style

 MapReduce style
« Compute-storage coupled

State

Streaming

State
52) APACHE
STORM

State

g B

@ RisingWavelabs
92



-

State Management: MapReduce-Style

 MapReduce style
« Compute-storage coupled

State

Streaming

State
52) APACHE
STORM

State

Btate

g B

@ RisingWavelabs
93



p
State Management: MapReduce-Style

» MapReduce style u l |
« Compute-storage 4y y 2

B @@

M

L] s samza
@ RisingWavelabs

94




p
State Management in the Cloud Era

 Cloud-native style
« Compute-storage decoupled

Compute (e.g., EC2)

AWS/GCP/Azure

Storage (e.g., S3) « RisingWavelabs
95



p
State Management in the Cloud Era

 Cloud-native style
« Compute-storage decoupled

it
-

Compute (e.g., EC2)

AWS/GCP/Azure

State

Storage (e.g., S3) « RisingWavelabs
96



p
State Management in the Cloud Era

 Cloud-native style
« Compute-storage decoupled

it
-

Compute (e.g., EC2)

AWS/GCP/Azure

State

Storage (e.g., S3) « RisingWavelabs
97



p
State Management in the Cloud Era

 Cloud-native style
« Compute-storage decoupled

AWS/GCP/Azure

State

Storage (e.g., S3) « RisingWavelabs
98



-
State Management in the Cloud Era

« Consider joining two data streams
* Impression stream

 Click stream
Hash table for impression stream

Impression (adld, impressionTime) State
» Output (adld, impressionTime, clickTime)

Click (adld, clickTime)

State

Hash table for click stream (C RisingWavelabs



p
State Management in the Cloud Era

« Consider joining two data streay /s
* Impression stream

e Click stream
sion stream

Impression (adld, impressionTime) State
gig ¢ Output (adld, i sionTime, clickTime)
» ( ‘
e
s ¢
- ¢
( |

Click (adld, clickTime)

@ RisingWavelabs
100

Hash table for click stream



State Management in the Cloud Era

« Consider joining two data streay /s
* Impression stream
 Click stream

Hash table * “ream

Impression (adld, impressionTime)

Output (adld, i sionTime, clickTime)

I’ ) - ofe 0

| [
: ! ™
| I (: ((
I |
| I » ¢ \
N e e e e e e e /7
I

Burst Click (adld, clickTime)
State

@ RisingWavelabs

Hash ta. ~m
101



State Management in the Cloud Era

« Consider joining two data streay /s
* Impression stream
 Click stream

Hash table * “ream

Impression (adld, impressionTime)

Output (adld, i sionTime, clickTime)

I’ » - oo 0
| '
: l K ¢’ ‘1.
I I § ((( L)
' ' »
O an
|\ ________ /l A d(
I
Burst Click (adld, clickTime) ’

@ RisingWavelabs

Hash ta. ~m
102



-
State Management: Comparison

4 APACHE 0 ° o
Spark (
F||nk Streaming STORM pljgy4- ( Kk RISIngWGVQ
MapReduce style, compute-storage coupled Cloud-native style, compute-storage decoupled
Compute
Compute (EC2)
CI =

I I

*State —
State Cl

Storage Storage
(S3) (S3)

@ RisingWavelabs
103



p
State Management: Comparison

ook 5D &k (2 RisingWave

SFlink Streaming

MapReduce style, compute-storage coupled Cloud-native style, compute-storage decoupled
States States
N
s /7 \
”
”
Compute
nodes Cache e'ache
|
I |

Persistent — ¥

state as checkpoint & RisingWavelabs

104



p
State Management: Failure Recovery

ook 5D &k (2 RisingWave

! |:||nk Streaming

MapReduce style, compute-storage coupled Cloud-native style, compute-storage decoupled
States States
N
s /7 \
”
”
Compute
nodes Cache e'ache
|
I |

Persistent — ¥

state as checkpoint & RisingWavelabs

105



p
State Management: Elastic Scaling

@ £, 2 STRm (& RisingWave

MapReduce style, compute-storage coupled Cloud-native style, compute-storage decoupled
States States
N
s /7 \
”
I |
”
Compute
nodes \ Cache O’ache Cache \
i Scale out Scale out
Persistent Checkpoi - e -

’ ! / “ | | /
Iﬁ If' stat & i * RiSYigWavelabs
106



Summary

e Stream processing systems continuously perform incremental
computations as new events arrive

» Key concepts: events, time windowing, watermark, ...
* Single node -> distributed -> cloud
« State management is critical in stream processing systems!

@& RisingWavelabs



Thank you!

Join RisingWave community today!

. [ ] [ J
".' risingwave.com/slack o
9 '




	Slide 1: An Introduction to  Stream Processing and Streaming Databases
	Slide 2: Who Am I?
	Slide 3: Who Am I?
	Slide 4: Why Stream Processing?
	Slide 5: Stock Trading Example
	Slide 6: Stock Trading Example
	Slide 7: Stock Trading Example
	Slide 8: Stock Trading Example
	Slide 9: Stock Trading Example
	Slide 10: Stock Trading Example
	Slide 11: Stock Trading Example
	Slide 12: Stock Trading Example
	Slide 13: Stock Trading Example
	Slide 14: Stock Trading Example
	Slide 15: Stock Trading Example
	Slide 16: Stock Trading Example
	Slide 17: Stock Trading Example
	Slide 18: Stock Trading Example
	Slide 19: Stock Trading Example
	Slide 20: Stock Trading Example
	Slide 21: Stock Trading Example
	Slide 22: Stock Trading Example
	Slide 23: Why Stream Processing?
	Slide 24: Why Stream Processing?
	Slide 25: Why Stream Processing?
	Slide 26: Why Stream Processing?
	Slide 27: Why Stream Processing?
	Slide 28: Why Stream Processing?
	Slide 29: Why Stream Processing?
	Slide 30: Why Stream Processing?
	Slide 31: Batch Processing vs. Stream Processing
	Slide 32: Batch Processing vs. Stream Processing
	Slide 33: Batch Processing vs. Stream Processing
	Slide 34: Stream Processing Use Cases
	Slide 35: Stream Processing Use Cases
	Slide 36: Stream Processing Use Cases
	Slide 37: Stream Processing Use Cases
	Slide 38: Stream Processing Use Cases
	Slide 39: Stream Processing Use Cases
	Slide 40: Stream Processing Use Cases
	Slide 41: Stream Processing Use Cases
	Slide 42: History of Stream Processing Systems
	Slide 43: History of Stream Processing Systems
	Slide 44: History of Stream Processing Systems
	Slide 45: History of Stream Processing Systems
	Slide 46: History of Stream Processing Systems
	Slide 47: History of Stream Processing Systems
	Slide 48: History of Stream Processing Systems
	Slide 49: Stream Processing Concepts (Boring Part!)
	Slide 50: Stream Processing Concepts
	Slide 51: Stream Processing Concepts
	Slide 52: Stream Processing Concepts
	Slide 53: Properties of Data Streams
	Slide 54: Two Important Concepts
	Slide 55: Time Windowing
	Slide 56: Time Windowing
	Slide 57: Watermarks
	Slide 58: Watermarks
	Slide 59: Coding!
	Slide 60: Coding!
	Slide 61: Coding!
	Slide 62: MapReduce!
	Slide 63: Revisiting MapReduce
	Slide 64: Revisiting MapReduce
	Slide 65: Revisiting MapReduce
	Slide 66: Revisiting MapReduce
	Slide 67: Why Switched Back to SQL Databases?
	Slide 68: Revisiting MapReduce
	Slide 69: Revisiting MapReduce
	Slide 70: Limitations of Stream Processing Engines
	Slide 71: Limitations of Stream Processing Engines
	Slide 72: Limitations of Stream Processing Engines
	Slide 73: Limitations of Stream Processing Engines
	Slide 74: Limitations of Stream Processing Engines
	Slide 75: Limitations of Stream Processing Engines
	Slide 76: Limitations of Stream Processing Engines
	Slide 77: Streaming Databases
	Slide 78: Streaming Databases
	Slide 79: Streaming Databases
	Slide 80: Streaming Databases
	Slide 81: Streaming Databases
	Slide 82: Streaming Databases in Production
	Slide 83: Streaming Databases in Production
	Slide 84: State Management (Deeply Technical)
	Slide 85: State Management
	Slide 86: State Management
	Slide 87: State Management
	Slide 88: State Management
	Slide 89: State Management
	Slide 90: State Management: MapReduce-Style
	Slide 91: State Management: MapReduce-Style
	Slide 92: State Management: MapReduce-Style
	Slide 93: State Management: MapReduce-Style
	Slide 94: State Management: MapReduce-Style
	Slide 95: State Management in the Cloud Era
	Slide 96: State Management in the Cloud Era
	Slide 97: State Management in the Cloud Era
	Slide 98: State Management in the Cloud Era
	Slide 99: State Management in the Cloud Era
	Slide 100: State Management in the Cloud Era
	Slide 101: State Management in the Cloud Era
	Slide 102: State Management in the Cloud Era
	Slide 103: State Management: Comparison
	Slide 104: State Management: Comparison
	Slide 105: State Management: Failure Recovery
	Slide 106: State Management: Elastic Scaling
	Slide 107: Summary
	Slide 108

