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Complex… and inefficient!!
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Why Stream Processing?

• Let’s do stream processing!
• Instead of letting users issue queries proactively…

• Let databases push results to users!

• Require defining queries beforehand

• Computation is triggered by events
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Batch Processing vs. Stream Processing
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Batch processing Stream processing

User-initiated computation
Full computation 

Event-driven computation
Incremental computation
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High-frequency trading

Fraud detection

Ads recommendation

Stock dashboarding

Delivery app

Inventory tracking

ML training

Data science

Accounting

Network monitoring

Travel booking
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• Financial services
• Payment services

• Fraud detection

• Capital markets (brokerage, hedge fund)
• Compliance, risk control, pre-trade analytics, …
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History of Stream Processing Systems

• Trend: Single node -> distributed -> cloud
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Stream Processing Concepts (Boring Part!)

49



Stream Processing Concepts

• In traditional data processing applications, we know the entire 
dataset in advance, e.g. tables stored in a database.

50



Stream Processing Concepts

• In traditional data processing applications, we know the entire 
dataset in advance, e.g. tables stored in a database.

• A data stream is a data set that is produced incrementally over 
time, rather than being available in full before its processing 
begins.

51



Stream Processing Concepts

• In traditional data processing applications, we know the entire 
dataset in advance, e.g. tables stored in a database.

• A data stream is a data set that is produced incrementally over 
time, rather than being available in full before its processing 
begins.

• Data streams are high-volume, real-time data that might be 
unbounded

• we cannot store the entire stream in an accessible way

• we have to process stream elements on-the-fly using limited memory
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Properties of Data Streams

• They arrive continuously instead of being available a-priori. 

• They bear an arrival and/or a generation timestamp.

• They are produced by external sources, i.e. the DSMS has no 
control over their arrival order or the data rate.

• They have unknown, possibly unbounded length, i.e. the DSMS 
does not know when the stream ends.
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Two Important Concepts

• Time Windowing
• Perform computation over a subset of data

• Watermark
• Make sure order is guaranteed

54



Time Windowing

• Data streams never end. We may want to compute on a subset 
of data.
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Time Windowing

• Three types of windows
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Watermarks

• Let’s talk about time first…

• Event time
• the time at which events actually occurred

• Ingestion time / processing time
• The time at which events are ingested into / processed by the system
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Watermarks

• It’s likely that events are ingested into / processed by the 
system in an random order

• How to guarantee order? Well, let’s use watermarks..
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MapReduce!
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• Scale computation in commodity machines
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• Give up control over storage
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Revisiting MapReduce
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Revisiting MapReduce
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Why Switched Back to SQL Databases?

• Cost! Cost! Cost!
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Revisiting MapReduce

• Scale computation in commodity machines

• Ideas:
• Expose low-level APIs

• Give up control over storage

• Tradeoff:
• Learning curve

• Efficiency

• Development difficulty

• Data stack complexity
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Limitations of Stream Processing Engines

• Learning curve
• System-specific interfaces
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• Efficiency
• Hard to get optimal efficiency
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Limitations of Stream Processing Engines

• Streaming analytics
• Monitoring, alerting, automation, etc…
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OLTP databases

Messaging queues

File systems

BI dashboards

Client libraries



Streaming Databases

• Get the best of both worlds!
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Database
Stream processing 

engine

Streaming Database



Streaming Databases

• Learning curve
• System-specific interfaces          Standard SQL!
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Streaming Databases

• Learning curve
• System-specific interfaces          Standard SQL!

• Efficiency
• Hard to get optimal efficiency           Highly efficient!

• Development difficulty
• Difficulty to verify correctness          Composable code!

• Data stack complexity
• “Bring your own storage”         One single system!
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Streaming Databases in Production

• Streaming analytics
• Monitoring, alerting, automation, etc…
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State Management (Deeply Technical)
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State Management
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• Supporting stateful computations can be very challenging
• Computation logics can be complicated

• Streaming data workload may fluctuate

Stream processing systems

Output



State Management

• Consider joining two data streams
• Impression stream

• Click stream
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Burst!

How to manage internal states?

State
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State Management
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• Joining multiple data streams can be much harder than joining 
two data streams

join

join

join

join

lineitem part

supplier

partsupp

orders
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• Consider joining two data streams
• Impression stream

• Click stream
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State Management: Comparison
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MapReduce style, compute-storage coupled Cloud-native style, compute-storage decoupled

State

State

State

State

Storage 
(S3)

Compute 
(EC2)

State

Storage 
(S3)

Compute 
(EC2)

State



State Management: Comparison
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State State State

States

State State State

Compute
nodes

Persistent 
storage

States

Checkpoint

Cache Cache Cache

“state as checkpoint”

MapReduce style, compute-storage coupled Cloud-native style, compute-storage decoupled



State Management: Failure Recovery
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State State State

States

State State State

Compute
nodes

Persistent 
storage

States

Checkpoint

Cache Cache Cache

“state as checkpoint”

State

Read from 
remote state

Recover from 
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State Management: Elastic Scaling
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State State State

States

State State State

Compute
nodes

Persistent 
storage

States

Checkpoint

Cache Cache Cache

“state as checkpoint”

Scale out Scale out

MapReduce style, compute-storage coupled Cloud-native style, compute-storage decoupled



Summary

• Stream processing systems continuously perform incremental 
computations as new events arrive

• Key concepts: events, time windowing, watermark, …

• Single node -> distributed -> cloud

• State management is critical in stream processing systems!
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Thank you!
Join RisingWave community today!

risingwave.com/slack
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