
CS6216 Advanced Topics in Machine Learning (Systems)

Application systems: server design, AI agents and RAGs

Yao LU
23 Oct 2024

National University of Singapore
School of Computing

Application systems: outline

• Server design

• Retrieval Augmented Generation (RAG)

• AI agents

Recap: HW3 LLM incremental decoding

• What’s happening
• KV cache initialization & loading
• Model forward propagation
• Decoding algorithm
• Stopping criterion
• Tokenizer

[Accelerating LLM requires machine] learning systems optimization

learning systems optimization [EOS]

Iterations: 0 1 2 3

Outputs:

Transformer Layer 1

Transformer Layer 96

LLM … …

Recap: HW3 LLM incremental decoding

• What’s happening
• KV cache initialization & loading
• Model forward propagation
• Decoding algorithm
• Stopping criterion
• Tokenizer

• What’s missing
• API server
• Queueing & batching
• Accounting & perf stats

[Accelerating LLM requires machine] learning systems optimization

learning systems optimization [EOS]

Iterations: 0 1 2 3

Outputs:

Transformer Layer 1

Transformer Layer 96

LLM … …

Model serving system: from
“cook” to “restaurant”

Server workflow

[Accelerating LLM requires machine] learning systems optimization

learning systems optimization [EOS]

Iterations:

Outputs:

Transformer Layer 1

Transformer Layer 96

LLM … …

A typical LLM server

Rest API server

Verifier

Request pool

Requests

Batcher

Batch = [(prompt, KV cache)]

Accounting &
eviction

KV cache manager

• Rest API server Handles LLM and control requests.

• Verifier checks if models, user access (authorization),
and generation parameters are valid. Handle errors.

• Request pool stores generation requests, their states
and outputs.

• Batcher assembles the next batch to compute by
fetching new or on-going queries from the pool. Note: the
amount that can be processed in a batch can be less
than the request pool.

• Accounting & eviction counts tokens and removes
finished, force stops (due to user interrupt, low account
balance etc.) queries.

• KV cache manager initializes and maintains the kv
cache to use for each query, offload or evict if necessary.

Batching and eviction logics

[Req 1, Prompt 1, KV cache 1, state_new]
[Req 2, Prompt 2, KV cache 2, state_new]
[Req 3, Prompt 3, KV cache 3, state_decode]
[Req 4, Prompt 4, KV cache 4, state_decode]
….
[Req k, Prompt k, KV cache k, state_decode]

Request pool
Taking which? FIFO or by $$

[Req 1, Prompt 1, KV cache 1, state_new]
[Req 2, Prompt 2, KV cache 2, state_new]
[Req k, Prompt k, KV cache k, state_decode]

Input batch – Step 1
Pick new queries, initialize KV cache, send for prefillNew queries

• A two-stage solution (solution from TGI, other
solutions exist)

[Req 1, Prompt 1 + 1 tk, KV cache 1, state_decode]
[Req 2, Prompt 2 + 1 tk, KV cache 2, state_decode]
[Req k, Prompt k, KV cache k, state_decode]

Input batch – Step 2 decode

[Req 1, Prompt 1 + 1 tk, KV cache 1, state_decode]
[Req 2, Prompt 2 + 1 tk, KV cache 2, state_decode]
[Req k, Prompt k + 1 tk, KV cache k, state_finish]

Input batch – Step 3 eviction, update pool

Other useful modules

• Session management
• In chat applications, some conversations last very long. This results in KV cache

getting “stuck” in GPU memory.

• Offload KV cache to lower tiers of memory/storage. Simple solutions include FIFO,
LRU-k etc. Some better solutions such as InfiniGen, OSDI 2024.

• Perf stats and profiling
• Prometheus for systems monitoring

• Nvidia nsight for GPU perf. profiling

• Debugging and testing
• So far, hand crafted solutions only

• Some simple sanity checks:
• Unit tests, logits comparisons

• “Secret” testing prompts

API server

• REST APIs with the OpenAI standard
• Stream, complete, chat, assistant APIs
• Platform & runtime independent

• Easy-to-use, off-the-shelf Python libraries: Uvicorn, FastAPI
• High performance REST servers available: Actix-web (Rust)

• Good ones can be 10x faster, but API server is a small overhead, relatively
• Geo-distributed? Highly available systems?

Application systems: outline

• Server design

• Retrieval Augmented Generation (RAG)

• AI agents

Retrieval Augmented Generation (RAG)

Directly using LLMs faces problems

• Information lag

• Model hallucination

• Hard to incorporate proprietary data

Retrieval Augmented Generation (RAG)

Directly using LLMs faces problems

• Information lag

• Model hallucination

• Hard to incorporate proprietary data

Instead, we need RAG =

• Retrieval: The user’s request is used to query some
external info - querying a vector store, a keyword search over
text, or querying a database. This is to obtain supporting data
/ context that helps the LLM provide a useful response.

• Augmentation: The supporting data / context is combined
with the user request, often using a template with instructions
to the LLM, to create a prompt.

• Generation: The LLM generates a response to the prompt.

RAG workflow
(Offline) Preprocess

• Chunking documents with simple heuristics (1)

• Compute embeddings w/ a pre-trained model (2)

• Indexing & store the embeddings in a database (2)

(Online) When a user query comes

• Compute embedding for the user query (3)

• Retrieve relevant embeddings from the database (4)

• Assemble a prompt, send it to LLM for result (5-7)

Example: Ask “How many employees?” to an SEC filing

Credits: devoriales.com

~100 pages, tables, text

“Retrieved” context from the document:

Drawbacks of RAG

• What if retrieval goes wrong?
• Raw documents are highly nonstructured

• Documents are too long

• Complex retrieval

• Ranking is wrong

• What if generation goes wrong?
• Prompt is too complex / long

• Generation doesn’t follow instruction /
format requirement

Looking back on the info retrieval literature

Many IR techniques can be applied to RAG

• Better chunking mechanisms

• Prompt compression

• Learning to rank / re-ranking

• Model selection, finetuning & distillation

• Multi-way retrieval

• Graph RAG

Better chunking mechanisms

• Besides the simple fix-length chunking, there are many other ways:

• Overlapping windows to make sure information is captured in some windows

• Structure-aware chunking to avoid breaking in the middle of paragraphs and sentences

• Document based chunking that leverages the document property (Markdown, HTML, LaTeX etc.)

• NLP/Semantic chunking to detect topic changes

• Agentic chucking uses AI agents to decide if a sentence should be added to the previous chunk.

Prompt compression

• More context = more accurate (at cost)

• LLMLingua EMNLP 2023 (Instruction tuning!)

Credits: databricks.com

Prompt compression

• More context = more accurate (at cost)

• LLMLingua EMNLP 2023 (Instruction tuning!)

Learning to rank / re-ranking

• The “retrieval” part can be improved by using
a learned top-k ranking model (should be
cheaper than the later LLM)

• Automatic and free labels from previous runs

• Reduces context length requirements
(improve P@K)

(Ranking)
feedbacks

Learned top-k
ranking model

Model selection, finetuning & distillation

• Finetune or distill the generation model in order
to reduce size, adapt to formatting requirements.
e.g., collect RAG outputs from Llama 70b and
send them to finetune Llama 13b

• Or for different queries, use different generation
models

• Further, we can propagate the gradients to the
embedding phrase, and finetune embedding
models

Finetuned /
distilled model

Multi-vector retrieval

• Classic RAG falls short for complex, multi-modal datasets

• Use different embedding models for inputs of different modality

Credits: Langchain

Graph RAG
• Classic RAG approaches do not consider links between entities.

• They also have a wholistic view of the dataset (with simple
similar search)

• Given a private dataset, GraphRAG from Microsoft generates the
knowledge graph using LLMs, and retrieve for relevant content
for new RAG queries.

An example knowledge graph

What’s more: raw documents in RAG

• Parsing & cleaning raw documents into structured data is often
challenging: noisy, unstructured, long documents

• Long-context vs RAG

• Long-context LLMs: simple (for developers) but often more
expensive (for users), can lost in the middle

• RAG: cheaper, deterministic security, easier to debug, up-
to-date info

• Our recent work UDA: A Benchmark Suite for Retrieval Augmented
Generation in Real-world Document Analysis. NeurIPS 2024.

• Studied ~3K real-world documents with ~30K annotated QA pairs.

• Many existing RAG solutions assume clean & structured inputs, which
results in accuracy degrade.

• Small models already work well in certain RAG applications.

• Long-context LLMs often fall short in some tasks that require
numerical reasoning.

• Access: https://github.com/qinchuanhui/UDA-Benchmark

Direct copy & paste

Application systems: outline

• Server design

• Retrieval Augmented Generation (RAG)

• AI agents

What are future AI applications like?

Generative
▪ Generate content like text & image

Agentic
▪ Execute complex tasks on behalf of human

25

Zaharia et al. 2024. The Shift from Models to Compound AI Systems

Examples of agentic AI

▪ Personal assistants

▪ Autonomous robots

▪ Gaming agents

▪ Science agents

▪ Web agents

▪ Software agents

27

Key benefits of agentic AI

▪ Useful Interface

▪ Natural interaction with human agency

▪ Strong Capability

▪ Operate with minimal human intervention

▪ Useful Architecture

▪ Intuitive programming paradigm

28

Commander

SafeguardWriter

User

① User Question ⑧ Final Answer

Repeat until
answering the

user’s question
or timeout

What if we prohibit shipping from supplier 1 to roastery 2?

Example workflow of agentic AI

User
What if we prohibit shipping
from supplier 1 to roastery 2?

(Writer nested in Commander, Triggered by User) (Safeguard nested in Commander, Triggered by Writer)

Commander

Example workflow of agentic AI

Agentic programming

▪ Handle more complex tasks /

Improve response quality

o Improve over natural iteration

o Divide & conquer

o Grounding & validation

Agentic programming

▪ Easy to understand, maintain, extend

o Modular composition

o Natural human participation

o Fast & creative experimentation

32

Agentic abstraction

Unify models, tools, human for compound AI systems

Multi-agent orchestration

▪ Static/dynamic
▪ NL/PL
▪ Context sharing/isolation
▪ Cooperation/competition
▪ Centralized/decentralized
▪ Intervention/automation

34

Agentic design patterns

▪ Conversation

▪ Prompting & reasoning

▪ Tool use

▪ Planning

▪ Integrating multiple models,

modalities and memories

35

Initially developed in FLAML (Nov 2022)

Spined off to a standalone repo (October 2023)​
Standalone GitHub organization AutoGen-AI (August 2024)

https://github.com/autogen-ai

AutoGen: a programming framework for agentic AI

https://github.com/autogen-ai

AutoGen

Define agents:
Conversable & Customizable

Get them to talk:
Conversation Programming

Simple programming interface

For more examples: https://autogen-ai.github.io/autogen/docs/notebooks

https://autogen-ai.github.io/autogen/docs/notebooks

Blogpost writing with reflection Two-Agent Reflection

Nested Chat

Blogpost writing with advanced reflection

Conversational chess

Complex task planning and solving with group chat

Complex task planning and solving with group chat

Other multi-agent systems

ChatDev MetaGPT

Other multi-agent systems

ChatDev MetaGPT

Many solutions are more application/software engineering

oriented. Lots research opportunities like

• Result interpretability and controllability

• Scalability

• Some guarantee & trustworthy AI

• Collaboration among RL- and LLM- agents

Overview

• Server design

• Retrieval Augmented Generation (RAG)

• AI agents

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) Application systems: server design, AI agents and RAGs
	Slide 2: Application systems: outline
	Slide 3: Recap: HW3 LLM incremental decoding
	Slide 4: Recap: HW3 LLM incremental decoding
	Slide 5: Server workflow
	Slide 6: Batching and eviction logics
	Slide 7: Other useful modules
	Slide 8: API server
	Slide 9: Application systems: outline
	Slide 10: Retrieval Augmented Generation (RAG)
	Slide 11: Retrieval Augmented Generation (RAG)
	Slide 12
	Slide 13: RAG workflow
	Slide 14: Drawbacks of RAG
	Slide 15: Looking back on the info retrieval literature
	Slide 16: Better chunking mechanisms
	Slide 17: Prompt compression
	Slide 18: Prompt compression
	Slide 19: Learning to rank / re-ranking
	Slide 20: Model selection, finetuning & distillation
	Slide 21: Multi-vector retrieval
	Slide 22: Graph RAG
	Slide 23: What’s more: raw documents in RAG
	Slide 24: Application systems: outline
	Slide 25: What are future AI applications like?
	Slide 26: Examples of agentic AI
	Slide 27
	Slide 28: Key benefits of agentic AI
	Slide 29
	Slide 30
	Slide 31: Agentic programming
	Slide 32: Agentic programming
	Slide 33: Agentic abstraction
	Slide 34: Multi-agent orchestration
	Slide 35: Agentic design patterns
	Slide 36: <Insert Title Here>
	Slide 37: How to Build an AI Application with AutoGen
	Slide 38
	Slide 39
	Slide 40: Example Application
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Other multi-agent systems
	Slide 47: Other multi-agent systems
	Slide 48: Overview

