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Chef

(LLM)
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(serving systems)

Disney world

(cloud systems)

From LLMs to the cloud

From serving to cloud systems: 

• Multi-tenancy: from scaling-up to scaling-out (models, users, applications, tasks etc.)

• Operations of large-scale, heterogeneous infrastructures



Outline

• Brief history of cloud computing

• Cloud native technologies

• Current practice and opportunities of AI on cloud



A history lesson

One application on one physical server

In the Dark Ages

• Slow deployment times

• Huge costs & wasted resources

• Difficult to scale & migrate

• Vendor lock in



Hypervisor-based Virtualization

A history lesson

• One physical server can contain 

multiple applications

• Each application runs in a virtual 

machine (VM)

• Better resource pooling

– One physical machine divided into multiple 

virtual machines

• Easier to scale

• VMs in the cloud

– Rapid elasticity

– Pay as you go model



Brief history of cloud computing

X86 
virtualization VLAN VPN

ESX, 
GSX

Xen 
3.0

KVM

Qumranet

WMWare
Workstations VirtualBox

Innoteck

Virtual 
Machines (VMs)

1998 1999 1999 2000 2001 2005 2006 2009

Mature of virtualization: no.1 important technology



Cloud computing offerings
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Cloud computing offerings



However, 

• Each VM stills requires

– CPU allocation

– Storage

– RAM

– An entire guest operating system

• The more VMs you run, the more resources you need

• Guest OS means wasted resources

• Application portability not guaranteed



Looking for all kinds of solutions…

Too many to consider



An analogy: cargo transportation



What are the possibilities



The challenge continued



Shipping containers



Container for code?

• Speed: share the same OS kernel.       

No OS to boot =  applications online 

in seconds

• Portability: Standardized software 

packaging. Less  dependencies  

between process  layers = ability to  

move between  infrastructure & OS

• Efficiency: Less OS overhead & 

improved VM density



Comparing containers and VMs

Containers are an app level construct VMs are an infrastructure level construct to turn 

one machine into many servers



Containers and VMs together

Containers and VMs together provide a tremendous amount of

flexibility for IT to optimally deploy and manage apps.

DEV

PROD



Definitions by Cloud Native Computing Foundation (CNCF) :

• Cloud native practices empower organizations to develop, build, and deploy workloads in computing 

environments (public, private, hybrid cloud) to meet their organizational needs at scale in a programmatic 

and repeatable manner. It is characterized by loosely coupled systems that interoperate in a manner 

that is secure, resilient, manageable, sustainable, and observable.

• Cloud native technologies and architectures typically consist of some combination of containers, service 

meshes, multi-tenancy, microservices, immutable infrastructure, serverless, declarative APIs etc.

• Combined with robust automation, cloud native practices allow organizations to make high-impact changes 

frequently, predictably, with minimal toil and clear separation of concerns.
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Rise of containers and Kubernetes (K8s)
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Kubernetes or K8s is a project spun out of Google as a open 

source next-gen container scheduler



Rise of containers and Kubernetes (K8s)
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• K8s is an orchestration tool for managing distributed services or containerized applications across a distributed cluster of nodes. 

• K8s follows a client-server architecture with a master and worker nodes. Core concepts in Kubernetes include pods, services 

(logical pods with a stable IP address) and deployments (a definition of the desired state for a pod or replica set).

• K8s users define rules for how container management should occur, and then K8s handles the rest



Architecture overview



Master components

● Kube-apiserver

● Etcd

● Kube-controller-manager

● Cloud-controller-manager

● Kube-scheduler

● Kube-apiserver: provides REST interface into the K8s control 

plane and datastore.

● Etcd: the cluster datastore; providing a strong, consistent and 

highly  available key-value store used for persisting cluster state

● Kube-controller-manager: manages all core component control 

loops; monitors and steers the cluster towards the desired state.

● Cloud-controller-manager: provides cloud-provider specific 

knowledge and integration capability. 

● Kube-scheduler: evaluates workload resource requirements and 

place it on a matching resource. 



Node components

● Kubelet

● Kube-proxy

● Container runtime engine

● kubelet: node agent for managing pod lifecycle on its host.

● kube-proxy: managing the network rules on each node and 

performs connection forwarding or load balancing.

● container runtime: executes and manages containers. 



Rise of containers and Kubernetes (K8s)
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Advantages of using K8s in reliable & efficient software deployment

• Velocity: fast to deploy while maintaining availability by immutable infrastructures &  declarative configurations

• Scaling: fast and auto scaling of software and develop team

• Infrastructure abstraction: applications-infrastructure separation & portability

• Efficiency: lower costs of running a server, develop/deploy/test software 



Rise of containers and Kubernetes (K8s)
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Cloud evolvement in the last two decades

• From physical machines to virtual machines to containers

• Different offerings: IaaS, PaaS, SaaS, Caas, FaaS on Public /private / hybrid cloud

• Kubernetes becoming standard

• High-available service on low-available hardware



Outline

• Brief history of cloud computing

• Cloud native technologies

• Current practice and opportunities of AI on cloud



Placement and load balancing (PLB)

Question: put 18KB into [A: 10KB | B: 20KB | C: 19KB | D: 25KB | E: 30KB]

• Placement

The overall goal is to reduce violation to users’ Service Level Agreements (SLAs), given that resource usages are dynamic. 

• First Fit: the first one that fits → B: 20KB

• Best Fit: the one that just fits → C: 19KB

• Worst first: the one that has the most resource → E: 30KB

• More advanced: 

• Multi-resource: memory, disk, CPU, etc.

• More complex policies: constrains, leave-one-out, leave-two-out and so on



Placement and load balancing (PLB)

• The real problem: usages can change → no theoretical guarantee for optimal placement, since 
everything is data-driven
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App 2

App 3

Over time App 1

App 2

App 3

Out of resource (violation)



Placement and load balancing (PLB)

• Load balancing: migrate to “make” some room

    But migration is not free, often very expensive: stateful VMs, DBs, etc. 

• Better migration mechanisms: cache compression, disaggregated memory etc.

• Resource usage prediction: placement & balancing based on predicted usages
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App 3

App 4

App k

App 2

App 3

App 4

App 1
App k



Failovers

• Failovers ensure a robust & highly available service

• Duplica on independent resources to avoid simultaneous failure

• Failovers are useful for hot software patching / updates

• Failovers can co-exist with PLB which makes it a lot more complex
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Failovers

• A fast failover involves efficient context switch & recovery

App 1

App 2

App 3

App 1

App 3

App 4

App 4

App 2

Failover due to:
• Unexpected: software/hardware failure 
• Scheduled: Software update

• Route requests to duplica

• Recover main from duplica

• Reinstate using logs

• Live migration



Serverless computing

• Some “rewrap” of ideas, but many cloud-native techniques are the same underneath

No servers to provision or manage. User describes 
application; system finds out best provision. 

No pay for idle. Billing model – user pays only for 
actual usage; financial risks at the operator. 

Build-in availability and fault tolerance. System also 
provides safety belts at no cost to the users.  

Scales with usage. System expanse and shrinks 
automatically with actual usage. 

Containers & orchestrators

(New) Serverless functions 
& overscriptions 



Serverless functions, or Function-as-a-service (FaaS)

• FaaS is an example of serverless computing to simply deployment of event-driven function calls

• Examples

• Netflix: media encoding, thumbnailing, content recommendation

• Airbnb: user authentication, process booking requests, payment

• Coca-cola: supply-chain operations, personalized promotions



Resource oversubscription

Overbooking of 
cloud resources

100 seats, sell 105 tickets

• (Almost) direct revenue boost , given the base at $100B!
• But still, new technologies needed



Resource oversubscription

• Technology prerequisites: 
• Virtualization to cut CPU/disk/memory into fine granularity
• Quick allocation / migration 
• Multi-tenancy over shared resources

• Key problem for oversubscription: 
• Increase oversubscription rate, while reduce/prevent violations w/ user SLAs
      SLA can be latency of query, service availability, etc. 

• Mechanisms for an oversubscribed system: 
• Similar PLB but at high resource usages



Outline

• Brief history of cloud computing

• Cloud native technologies

• Current practice and opportunities of AI on cloud



Practice and opportunities of AI on GPU cloud

• Cloud native technologies are open-box 
solutions for may AI use cases 

• Key idea: containerizing your models 

https://www.cncf.io/wp-content/uploads/2024/03/cloud_native_ai24_031424a-2.pdf



Practice and opportunities of AI on GPU cloud

• But, some cloud-native ideas couldn’t be applied

• GPU virtualization and oversubscription

• Fine-grained scheduling and operations

• Each container is a big black-box



User / App 1

Resource oversubscription for GPUs?

Tight coupling between 
resource specification and allocation

User / App 2

GPU(s) 1

GPU(s) 2

User / App 3 GPU(s) 3

This means it’s hard to switch context / allocation, even when the resource is in idle.



User / App 1

Breaking the tight coupling between apps & allocation

“Virtulizating” GPUs into thread and memory blocks, 
But, big engineering challenges

User / App 2
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Looking forward

• Multi-tenancy in AI workloads
• Users, apps, tasks, models, adapters, prompts, …

• Breaking the black-boxes
• Co-design of AI and cloud systems

• Cloud-native → AI-native

Punica: Multi-Tenant LoRA Serving



Looking forward

• New opportunities in cloud AI
• New cloud with heterogeneous, ephemeral infra

                         spot instances, intermittent/green power

• New services: multi-agent AI, RAGs etc.

• New hardware & architecture: RISC-V AI chips, AISC chips

• New applications: AI-for-X

ChatDev



What we have covered & not covered

• MLsys foundations

• Automatic differentiation

• Hardware acceleration

• Parallelism and training techniques

• Transformers, attention and optimizations

• Serving LLMs

• Fine-tuning and alignment techniques

• AI for systems

• Application systems

• ML compilers

• Cloud systems for AI

• Compute graph optimization

• Heterogeneous runtime

• Serving multi-modal models

• Serving mixture-of-experts models

• ML ops

• Many more..

Covered Not covered



Wish you all the best in your PhD / Masters journey!
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