CS6216 Advanced Topics in Machine Learning (Systems)

Cloud systems for Al

Yao LU
06 Nov 2024

National University of Singapore
School of Computing

From LLMs to the cloud

Chef Restaurant Disney world
(LLM) (serving systems) (cloud systems)

From serving to cloud systems:
* Multi-tenancy: from scaling-up to scaling-out (models, users, applications, tasks etc.)

* Operations of large-scale, heterogeneous infrastructures

Outline

* Brief history of cloud computing
* Cloud native technologies

* Current practice and opportunities of Al on cloud

A history lesson

In the Dark Ages

| | - Slow deployment times
Application
- Huge costs & wasted resources
' Operating System - Difficult to scale & migrate
- Vendor lock in

L {

One application on one physical server

A history lesson

Hypervisor-based Virtualization

Better resource pooling

— One physical machine divided into multiple
virtual machines

Easier to scale
VMs in the cloud
— Rapid elasticity

Host Operating System —~ Pay as you go model

C

BR Microsoft Azure
* One physical server can contain

multiple appli(.:ations ‘.‘a’;“ azon vimware

- Each application runs in a virtual webservices *
machine (VM)

Brief history of cloud computing

Virtual
Machines (VMs)

WMWare

Workstations VLAN VirtualBox

1999 1999 2000 2001 2005 2006 2009

vmware: vimware

&IEEE vmware CITRIX' Qumranet Innoteck

‘ redhat

Mature of virtualization: no.1 important technology

Cloud computing offerings

é laaS é PaaS

Google First

App PaaS
Engine

Microsoft
Azure

cloud laaS

service

2008 2009 2010 2011

_E;g@azon GO@gle K| HEROKU & Microsoft uopenstack Pivotal Gowgl

services

$5,000,000

Months of development

Open-
source

Open-
source

4

Open-
source

Google

Foundry Jfine

$5,000
2005 Team of engineers 2017 Anengineer

Weeks development

é FaaS

Lambda

2014

(T1T
"i..!' “amazon
07 webs

services

Cloud computing offerings

Traditional

On-Premises IT Colocation Hosting

Data Data

Application Application Application

Databases Databases Databases

Operating System Operating System Operating System

Virtualization Virtualization Virtualization

Physical Servers Physical Servers Physical Servers

Network & Storage Network & Storage Network & Storage

Data Center Data Center Data Center

. Provider-Supplied . Self~-Managed

laasS

Data

Application

Databases

Operating System

Virtualization

Physical Servers

Network & Storage

Data Center

PaaS

Application

Databases

Operating System

Virtualization

Physical Servers

Network & Storage

Data Center

SaasS

Application

Databases

Operating System

Virtualization

Physical Servers

Network & Storage

Data Center

However,

- Each VM stills requires
— CPU allocation
— Storage
- RAM
— An entire guest operating system

- The more VMs you run, the more resources you need
- Guest OS means wasted resources

- Application portability not guaranteed

Looking for all kinds of solutions...

Static website

Web frontend

Background workers

Analytics DB

Development
VM

m

Too many to consider

Single Prod Onsite Public Cloud Contributor's Customer

QA Server Server Cluster laptop Servers

Do | worry about Can | transport quickly
how goods interact and smoothly
(e.g. coffee beans (e.g. from boat to train
next to spices) to truck)

Suui0ys/3uiiodsuesy

spoo9 jo Aypndniniy 10} spoyiaw
jo Aydipdniniy

An analogy: cargo transportation

What are the possibilities

| ||
@ ||
JAEEERE
el | J :
=l
|

The challenge continued

v ®® UserDB =
ﬁ . . [Jsl Y] w
e ee Static website ool “® Queue Analytics DB 3 s
"mé nginx 1.5 + modsecurity + openssl + bootstrap 2 ‘R:ﬁs”edssmﬁm hadoop + hive + thrift + OpenJDK g % 3
> = o bl
= I @ = g 5
= ‘S Background workers #9" Wohrontend £ a
] y ') Ruby + Rails + sass + Unicorn o g
- Python 3.0 + celery + pyredis + libcurl + fimpeg + libopency + nodejs + ..‘. . 3
S phantomjs a8 API endpomt n

Python 2.7 + Flask + pyredis + celery + psycopg + postgresgl-client

. Development VM Bublic Cloud

mweowmeew QA server

Production Cluster

i

hardware
environments

Disaster recovery

Customer Data Center ' Contributor’s laptop .
y

Production Servers

Multiplicity of

w
0O
3 o
0 >
2—
> 3
P
o

=5 -
o o

Shipping containers

W s

A standard container that is
loaded with virtually any
goods, and stays sealed until
it reaches final delivery.

Multiplicity of Goods

...in between, can be loaded and
unloaded, stacked, transported
efficiently over long distances,
and transferred from one mode
of transport to another

Multiplicity of
methods for
transporting/storing

(3onJ13 03 ulen
031 31eoq wouj ‘8'9)
Alyizoows pue Apjainb

(s@21ds 03 3xau
sueaq 29}j0d "8'9)

1oeJ1djul Spood moy
noqe Asiom | oQ

yodsuesy | ue)

Container for code?

Multiplicity of Stacks

Multiplicity ot
hardware

. . ‘. e -/
oo Static website %® UserDB oo Web frontend s Queue es Analytics DB , O
3 _3
d 2o
S ER
2o
An engine that enables any = &
payload to be encapsulated e 3
asa @
lightweight, portable, self-
...that can be manipulated using
8 standard operations and run 3
& consistently on virtually any 2 n
B hardware platform 53
g 3
g ' 2@
T a-
Develonment 0OA econver Cuetomer Data Piihlic Cland Production Contributor's z

;

* Speed: share the same OS kernel.
No OS to boot = applications online
In seconds

° Portability: Standardized software
packaging. Less dependencies
between process layers = ability to
move between infrastructure & OS

* Efficiency: Less OS overhead &
improved VM density

Comparing containers and VMs

CONTAINER VM

App A App B App C App A App B App C

Bins/Libs Bins/Libs Bins/Libs

Guest OS Guest OS Guest OS

Bins/Libs Bins/Libs ’ Bins/Libs

Docker

Host OS Hypervisor

Infrastructure Infrastructure

Containers are an app level construct VMs are an infrastructure level construct to turn
one machine into many servers

Containers and VMs together

PROD

DEV AppA | AppB App C

App D

Bins/Libs | Bins/Libs [Bins/Libs
App A App B App C | |

Bins/Libs Bins/Libs Bins/Libs Docker Docker Bins/Libs

Guest OS Guest OS Guest OS
Docker

Host OS Hypervisor

Infrastructure Infrastructure

Containers and VMs together provide a tremendous amount of
flexibility for IT to optimally deploy and manage apps.

Cloud native technologies

T 7T CLOUD NATIVE

Definitions by Cloud Native Computing Foundation (CNCF) : L COMPUTING FOUNDATION

Cloud native practices empower organizations to develop, build, and deploy workloads in computing
environments (public, private, hybrid cloud) to meet their organizational needs at scale in a programmatic
and repeatable manner. Itis characterized by loosely coupled systems that interoperate in a manner
that is secure, resilient, manageable, sustainable, and observable.

Cloud native technologies and architectures typically consist of some combination of containers, service
meshes, multi-tenancy, microservices, immutable infrastructure, serverless, declarative APIs etc.

Combined with robust automation, cloud native practices allow organizations to make high-impact changes
frequently, predictably, with minimal toil and clear separation of concerns.

Microservice

_ Immutable Declarative
nfrastructure API

Rise of containers and Kubernetes (K8s)

é Containers é Kubernetes

Google Kubernetes
graduated

released CNCF Adopting Adopting

Docker Kubernetes established J kubernetes B kubernetes

2013 2014 2015 2015 2017 2018

. _ .
docker Google LiGmmemans Google &gl §57-docker LI SiomRNATIE

Kubernetes or K8s is a project spun out of Google as a open
source next-gen container scheduler

Rise of containers and Kubernetes (K8s)

é Containers é Kubernetes

Google Kubernetes
graduated

released CNCF Adopting Adopting

Docker Kubernetes established J kubernetes B kubernetes

2013 2014 2015 2015 2017 2017 2018

docker Go.@,gle .| CLOUD NATIVE Go.@,gle MESOS G2 00CKRN Ld Shovmmarommmn

« K8s is an orchestration tool for managing distributed services or containerized applications across a distributed cluster of nodes.

« K8s follows a client-server architecture with a master and worker nodes. Core concepts in Kubernetes include pods, services
(logical pods with a stable IP address) and deployments (a definition of the desired state for a pod or replica set).

« K8s users define rules for how container management should occur, and then K8s handles the rest

Architecture overview

Cloud
Provider API

o/

kubectl

: | cloud-controller-manager Iq—

| kube-controller-manager |q-—

| kube-scheduler

Masters - 1,2...n

Containers

-

kube-apiserver

=

| kubelet

System Services

>| kubelet |

System Services

|
|
Cloud Provider
Network Edge
1
|
I
|
|
|
|
|
|
1
|
|
1
|
U
\,
7 amNil

End Users

Master components

o/

Cloud
Provider API

kubectl

Masters - 1,2...n

— — — —
=
c
(-3
?
[74]
(2]
=
1]
Q.
=
1]
-

kube-apiserver 4—

- """

provides REST interface into the K8s control
plane and datastore.
the cluster datastore; providing a strong, consistent and
highly available key-value store used for persisting cluster state
manages all core component control
loops; monitors and steers the cluster towards the desired state.
provides cloud-provider specific

knowledge and integration capability.

evaluates workload resource requirements and

place it on a matching resource.

Node components

Containers
node agent for managing pod lifecycle on its host.
d d :
p: p: managing the network rules on each node and
: y § performs connection forwarding or load balancing.
—T> kube-proxy -
; ' executes and manages containers.
e s

] ; Container Runtime
1

| — R F .

1
— kubelet :
1
]

‘. System Services y

Rise of containers and Kubernetes (K8s)

é Containers é Kubernetes

Google

: , Kubernetes
Docker released CNCF QI Adopting I graduated
Kubernetes established J kubernetes kubernetes

2013 2014 2015 2015 2017 2018

COMPUTING FOUNDATION
N

A _ KD
docker GOOgle LiGantamia Google > Mesos &Fdocker LiGSm A

Advantages of using K8s in reliable & efficient software deployment

Velocity: fast to deploy while maintaining availability by immutable infrastructures & declarative configurations
Scaling: fast and auto scaling of software and develop team

Infrastructure abstraction: applications-infrastructure separation & portability

Efficiency: lower costs of running a server, develop/deploy/test software

Rise of containers and Kubernetes (K8s)

é Containers é Kubernetes

Google :
released CNCF Adopting Adopting
Kubernetes established & kubernetes J kubernetes

Kubernetes
graduated

Docker

2013 2014 2015 2015 2017 2018

. B .
docker Google LiGamemam Google &gl Mesos -&Fdocker LiGamermons

Cloud evolvement in the last two decades

* From physical machines to virtual machines to containers
» Different offerings: l1aaS, PaaS, SaaS, Caas, FaaS on Public /private / hybrid cloud
e Kubernetes becoming standard

* High-available service on low-available hardware

Outline

* Brief history of cloud computing
* Cloud native technologies

* Current practice and opportunities of Al on cloud

Placement and load balancing (PLB)

put 18KB into [A: 10KB | B: 20KB | C: 19KB | D: 25KB | E: 30KB]

The overall goal is to reduce violation to users’ Service Level Agreements (SLAs), given that resource usages are dynamic.
* First Fit: the first one that fits = B: 20KB

* Best Fit: the one that just fits = C: 19KB
* Worst first: the one that has the most resource — E: 30KB

* More advanced:
e Multi-resource: memory, disk, CPU, etc.

* More complex policies: constrains, leave-one-out, leave-two-out and so on

Placement and load balancing (PLB)

* The real problem: usages can change — no theoretical guarantee for optimal placement, since
everything is data-driven

? Out of resource (violation)

B
App 3

- App 3

==

Over time
App 1

Placement and load balancing (PLB)

* Load balancing: migrate to “make” some room

?
oot M

App 4

App 3

App 1

But migration is not free, often very expensive: stateful VMs, DBs, etc.
e Better migration mechanisms: cache compression, disaggregated memory etc.

* Resource usage prediction: placement & balancing based on predicted usages

Failovers

* Failovers ensure a robust & highly available service

* Duplica on independent resources to avoid simultaneous failure

App 3 App 4 App 5

App 1 App 1 App 4

* Failovers are useful for hot software patching / updates

* Failovers can co-exist with PLB which makes it a lot more complex

Failovers

* A fast failover involves efficient context switch & recovery

* Route requests to duplica

- » * Recover main from duplica

* Reinstate using logs

App 4 : N
* Live migration

Failover due to:
* Unexpected: software/hardware failure
e Scheduled: Software update

Serverless computing

* Some “rewrap” of ideas, but many cloud-native techniques are the same underneath

D D D User describes -

]‘_ A _]‘ application; system finds out best provision.
Rt System expanse and shrinks — Containers & orchestrators
o automatically with actual usage.

System also
provides safety belts at no cost to the users. (New) Serverless functions

& overscriptions

actual usage; financial risks at the operator. —

Billing model — user pays only for

Serverless functions, or Function-as-a-service (FaaS)

e FaaS is an example of serverless computing to simply deployment of event-driven function calls

* Examples

media encoding, thumbnailing, content recommendation

user authentication, process booking requests, payment Event-Driven
Workloads

/ s

| Varer e s | Wh 9[everest |
I en &~

~\

[Bursty Workloads \, [RapidD:::Itooptzpe:‘tg a"dJ

supply-chain operations, personalized promotions

J

-

Cost Optimization]

o

Resource oversubscription

Overbooking of
cloud resources

100 seats, sell 105 tickets

* (Almost) direct revenue boost, given the base at $100B!
e But still, new technologies needed

Resource oversubscription

* Virtualization to cut CPU/disk/memory into fine granularity
e Quick allocation / migration
 Multi-tenancy over shared resources

* Increase oversubscription rate, while reduce/prevent violations w/ user SLAs
SLA can be latency of query, service availability, etc.

e Similar PLB but at high resource usages

Outline

* Brief history of cloud computing
* Cloud native technologies

e Current practice and opportunities of Al on cloud

Practice and opportunities of Al on GPU cloud
Cloud Notive AL

* Cloud native technologies are open-box :
solutions for may Al use cases g 2 e & st

Exp|cnn1: Data

759 Analaysis (EDA)

containerizing your models sl

Predictive Generative o
. WOf‘k[OOde Z// classification Object Detection Rdés LiMs Q

CNCF Al Working Group |

: Medels, a\Pphco{t‘.ons,... |\ Clustering Forecasting o Vector DBs [ymMg | Doto-Seientist/ :
B e R : 2 e S - bgvgln‘oer
CLOUD : = L o S
NATIVE | ML Lfecyele L Goore) ([Fdmoy) (e soveg) [Fatroate) ((omene]J _

1 UL/ML/LLAM Ops) C Deta/MUAL
ARTIFICIAL | =)-E-J-E- | Ergneer

LSS e omi'riﬁii""ww [® 0 - H = Q j

N = 1
" Platform Engineer :

i Infrastructure] . |
i Cloud or On-fnrgm [__aw_gﬂ % 3 . 3 é i
| v . SRE/Operations |

ePU &PU WPU TPU DPU] . Hardware
Architect

Hordware

Accelerotors [

(intel) <nvioia. arm {5 AMDIU™

https://www.cncf.io/wp-content/uploads/2024/03/cloud_native_ai24_031424a-2.pdf e ,

Practice and opportunities of Al on GPU cloud

e But, some cloud-native ideas couldn’t be applied

* GPU virtualization and oversubscription

* Fine-grained scheduling and operations

* Each container is a big black-box

Resource oversubscription for GPUs?

o

User / App 1 o j@;_: GPU(s) 1
o

User / App 2 g i@;_: GPU(s) 2

J {

GPU(s) 3

K

User / App 3 | i

Tight coupling between
resource specification and allocation

This means it’s hard to switch context / allocation, even when the resource is in idle.

Breaking the tight coupling between apps & allocation

User / App 1

User / App 2

User / App 3

vGPU vGPU

vGPU vGPU

vGPU VvGPU

Resource pool

Qo
=0
M
(%]
o
c
-
o
™
3
o
S
o
0q
)
-

awiuny ‘suajidwo)

GPU 1

GPU 2

GPU 3

“Virtulizating” GPUs into thread and memory blocks,

But, big engineering challenges

Looking forward

* Multi-tenancy in Al workloads
* Users, apps, tasks, models, adapters, prompts, ...

lequnchen@rhiannon: ~/download/punica-checkout
(punica-demo) lequnchen@rhiannon:~/download/punica-checkout$ ||

* Breaking the black-boxes
e Co-design of Al and cloud systems
* Cloud-native — Al-native

Punica: Multi-Tenant LORA Serving

#GPUs: ANY O0X 1X 2X 4X 8X 8X+ On-Demand « Any GPU - Planet Earth « Auto Sort

m:12140 host:73118 Spain, ES
ROME2D32GM 2758 Mbps waxouaton S0-468/hr
1X RTX 4090 PCIE4.0,8x 12768/ 5998 Mbps 100 ports 9 days
n
81.4 riops 2408 AMD EPYC 7642 ... nvme 73.7 opert petabitny
Looki ng forward — ’
m:12959 host:57805 North Carolina, U - ’ 2
P $0.503/hr
1x RTX 4090 .
24GB
e B6ne U,
m11541 host: in, ES
73118 Spain, $0.478/hr

* New opportunities in cloud Al 1x RTX 4090

81.4 trops 2408

* New cloud with heterogeneous, ephemeral infra i A
.) . O hestasasd PP ROGCROSSHAIR. assmeps v $0.556/hr

1x RTX 4090 PCIE40Sx 128G8/s 7550 Mbps 500 ports 12 mon.

spot instances, intermittent/green power rshiiaie - ol Hlum o

Develop a
Gomoku game o

* New services: multi-agent Al, RAGs etc. % 5

e

i)

nd g
|
- .
| AN

* New hardware & architecture: RISC-V Al chips, AISC chips

gomoku i)

atDev

What we have covered & not covered

« MLsys foundations

« Automatic differentiation

« Hardware acceleration

« Parallelism and training techniques

» Transformers, attention and optimizations
« Serving LLMs

* Fine-tuning and alignment techniques
» Al for systems

» Application systems

« ML compilers

« Cloud systems for Al

Covered

Compute graph optimization
Heterogeneous runtime

Serving multi-modal models
Serving mixture-of-experts models

ML ops

Many more..

Not covered

Wish you all the best in your PhD / Masters journey!

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) Cloud systems for AI
	Slide 2: From LLMs to the cloud
	Slide 3: Outline
	Slide 4: A history lesson
	Slide 5: A history lesson
	Slide 6: Brief history of cloud computing
	Slide 7: Cloud computing offerings
	Slide 8: Cloud computing offerings
	Slide 9: However,
	Slide 10: Looking for all kinds of solutions…
	Slide 11: An analogy: cargo transportation
	Slide 12: What are the possibilities
	Slide 13: The challenge continued
	Slide 14: Shipping containers
	Slide 15: Container for code?
	Slide 16: Comparing containers and VMs
	Slide 17: Containers and VMs together
	Slide 18: Cloud native technologies
	Slide 19: Rise of containers and Kubernetes (K8s)
	Slide 20: Rise of containers and Kubernetes (K8s)
	Slide 21: Architecture overview
	Slide 22: Master components
	Slide 23: Node components
	Slide 24: Rise of containers and Kubernetes (K8s)
	Slide 25: Rise of containers and Kubernetes (K8s)
	Slide 26: Outline
	Slide 27: Placement and load balancing (PLB)
	Slide 28: Placement and load balancing (PLB)
	Slide 29: Placement and load balancing (PLB)
	Slide 30: Failovers
	Slide 31: Failovers
	Slide 32: Serverless computing
	Slide 33: Serverless functions, or Function-as-a-service (FaaS)
	Slide 34: Resource oversubscription
	Slide 35: Resource oversubscription
	Slide 36: Outline
	Slide 37: Practice and opportunities of AI on GPU cloud
	Slide 38: Practice and opportunities of AI on GPU cloud
	Slide 39: Resource oversubscription for GPUs?
	Slide 40: Breaking the tight coupling between apps & allocation
	Slide 41: Looking forward
	Slide 42: Looking forward
	Slide 43: What we have covered & not covered
	Slide 44

