
CS6216 Advanced Topics in Machine Learning (Systems)

Cloud systems for AI

Yao LU

06 Nov 2024

National University of Singapore

School of Computing

Chef

(LLM)

Restaurant

(serving systems)

Disney world

(cloud systems)

From LLMs to the cloud

From serving to cloud systems:

• Multi-tenancy: from scaling-up to scaling-out (models, users, applications, tasks etc.)

• Operations of large-scale, heterogeneous infrastructures

Outline

• Brief history of cloud computing

• Cloud native technologies

• Current practice and opportunities of AI on cloud

A history lesson

One application on one physical server

In the Dark Ages

• Slow deployment times

• Huge costs & wasted resources

• Difficult to scale & migrate

• Vendor lock in

Hypervisor-based Virtualization

A history lesson

• One physical server can contain

multiple applications

• Each application runs in a virtual

machine (VM)

• Better resource pooling

– One physical machine divided into multiple

virtual machines

• Easier to scale

• VMs in the cloud

– Rapid elasticity

– Pay as you go model

Brief history of cloud computing

X86
virtualization VLAN VPN

ESX,
GSX

Xen
3.0

KVM

Qumranet

WMWare
Workstations VirtualBox

Innoteck

Virtual
Machines (VMs)

1998 1999 1999 2000 2001 2005 2006 2009

Mature of virtualization: no.1 important technology

Cloud computing offerings

S3,
EC2

First
PaaS

Open-
source
IaaS

Google
App

Engine
Lambda

IaaS PaaS

Microsoft
Azure
cloud

service

Open-
source
IaaS

Cloud
Foundry

Google
Cloud
Engine

Open-
source
PaaS

FaaS

2006 2008 2009 2010 2011 2011 2013 2014

$5,000,000

Team of engineers

Months of development

$5,000

An engineer

Weeks development

2005 2017

Cloud computing offerings

However,

• Each VM stills requires

– CPU allocation

– Storage

– RAM

– An entire guest operating system

• The more VMs you run, the more resources you need

• Guest OS means wasted resources

• Application portability not guaranteed

Looking for all kinds of solutions…

Too many to consider

An analogy: cargo transportation

What are the possibilities

The challenge continued

Shipping containers

Container for code?

• Speed: share the same OS kernel.

No OS to boot = applications online

in seconds

• Portability: Standardized software

packaging. Less dependencies

between process layers = ability to

move between infrastructure & OS

• Efficiency: Less OS overhead &

improved VM density

Comparing containers and VMs

Containers are an app level construct VMs are an infrastructure level construct to turn

one machine into many servers

Containers and VMs together

Containers and VMs together provide a tremendous amount of

flexibility for IT to optimally deploy and manage apps.

DEV

PROD

Definitions by Cloud Native Computing Foundation (CNCF) :

• Cloud native practices empower organizations to develop, build, and deploy workloads in computing

environments (public, private, hybrid cloud) to meet their organizational needs at scale in a programmatic

and repeatable manner. It is characterized by loosely coupled systems that interoperate in a manner

that is secure, resilient, manageable, sustainable, and observable.

• Cloud native technologies and architectures typically consist of some combination of containers, service

meshes, multi-tenancy, microservices, immutable infrastructure, serverless, declarative APIs etc.

• Combined with robust automation, cloud native practices allow organizations to make high-impact changes

frequently, predictably, with minimal toil and clear separation of concerns.

Cloud native technologies

Cloud native

Container
Service
mesh

Microservice

Immutable
infrastructure

Declarative
API

Rise of containers and Kubernetes (K8s)

LXC
container OCI

CNCF
established

Docker
Kubernetes
graduated
from CNCF

Containers

Google
released

Kubernetes

Adopting
kubernetes

Adopting
kubernetes

Kubernetes

2008 2013 2014 2015 2015 2017 2017 2018

Kubernetes or K8s is a project spun out of Google as a open

source next-gen container scheduler

Rise of containers and Kubernetes (K8s)

LXC
container OCI

CNCF
established

Docker
Kubernetes
graduated
from CNCF

Containers

Google
released

Kubernetes

Adopting
kubernetes

Adopting
kubernetes

Kubernetes

2008 2013 2014 2015 2015 2017 2017 2018

• K8s is an orchestration tool for managing distributed services or containerized applications across a distributed cluster of nodes.

• K8s follows a client-server architecture with a master and worker nodes. Core concepts in Kubernetes include pods, services

(logical pods with a stable IP address) and deployments (a definition of the desired state for a pod or replica set).

• K8s users define rules for how container management should occur, and then K8s handles the rest

Architecture overview

Master components

● Kube-apiserver

● Etcd

● Kube-controller-manager

● Cloud-controller-manager

● Kube-scheduler

● Kube-apiserver: provides REST interface into the K8s control

plane and datastore.

● Etcd: the cluster datastore; providing a strong, consistent and

highly available key-value store used for persisting cluster state

● Kube-controller-manager: manages all core component control

loops; monitors and steers the cluster towards the desired state.

● Cloud-controller-manager: provides cloud-provider specific

knowledge and integration capability.

● Kube-scheduler: evaluates workload resource requirements and

place it on a matching resource.

Node components

● Kubelet

● Kube-proxy

● Container runtime engine

● kubelet: node agent for managing pod lifecycle on its host.

● kube-proxy: managing the network rules on each node and

performs connection forwarding or load balancing.

● container runtime: executes and manages containers.

Rise of containers and Kubernetes (K8s)

LXC
container OCI

CNCF
established

Docker
Kubernetes
graduated
from CNCF

Containers

Google
released

Kubernetes

Adopting
kubernetes

Adopting
kubernetes

Kubernetes

2008 2013 2014 2015 2015 2017 2017 2018

Advantages of using K8s in reliable & efficient software deployment

• Velocity: fast to deploy while maintaining availability by immutable infrastructures & declarative configurations

• Scaling: fast and auto scaling of software and develop team

• Infrastructure abstraction: applications-infrastructure separation & portability

• Efficiency: lower costs of running a server, develop/deploy/test software

Rise of containers and Kubernetes (K8s)

LXC
container OCI

CNCF
established

Docker
Kubernetes
graduated
from CNCF

Containers

Google
released

Kubernetes

Adopting
kubernetes

Adopting
kubernetes

Kubernetes

2008 2013 2014 2015 2015 2017 2017 2018

Cloud evolvement in the last two decades

• From physical machines to virtual machines to containers

• Different offerings: IaaS, PaaS, SaaS, Caas, FaaS on Public /private / hybrid cloud

• Kubernetes becoming standard

• High-available service on low-available hardware

Outline

• Brief history of cloud computing

• Cloud native technologies

• Current practice and opportunities of AI on cloud

Placement and load balancing (PLB)

Question: put 18KB into [A: 10KB | B: 20KB | C: 19KB | D: 25KB | E: 30KB]

• Placement

The overall goal is to reduce violation to users’ Service Level Agreements (SLAs), given that resource usages are dynamic.

• First Fit: the first one that fits → B: 20KB

• Best Fit: the one that just fits → C: 19KB

• Worst first: the one that has the most resource → E: 30KB

• More advanced:

• Multi-resource: memory, disk, CPU, etc.

• More complex policies: constrains, leave-one-out, leave-two-out and so on

Placement and load balancing (PLB)

• The real problem: usages can change → no theoretical guarantee for optimal placement, since
everything is data-driven

App 1

App 2

App 3

Over time App 1

App 2

App 3

Out of resource (violation)

Placement and load balancing (PLB)

• Load balancing: migrate to “make” some room

 But migration is not free, often very expensive: stateful VMs, DBs, etc.

• Better migration mechanisms: cache compression, disaggregated memory etc.

• Resource usage prediction: placement & balancing based on predicted usages

App 1

App 2

App 3

App 4

App k

App 2

App 3

App 4

App 1
App k

Failovers

• Failovers ensure a robust & highly available service

• Duplica on independent resources to avoid simultaneous failure

• Failovers are useful for hot software patching / updates

• Failovers can co-exist with PLB which makes it a lot more complex

App 1

App 2

App 3

App 1

App 2

App 4

App 4

App 2

App 5

Failovers

• A fast failover involves efficient context switch & recovery

App 1

App 2

App 3

App 1

App 3

App 4

App 4

App 2

Failover due to:
• Unexpected: software/hardware failure
• Scheduled: Software update

• Route requests to duplica

• Recover main from duplica

• Reinstate using logs

• Live migration

Serverless computing

• Some “rewrap” of ideas, but many cloud-native techniques are the same underneath

No servers to provision or manage. User describes
application; system finds out best provision.

No pay for idle. Billing model – user pays only for
actual usage; financial risks at the operator.

Build-in availability and fault tolerance. System also
provides safety belts at no cost to the users.

Scales with usage. System expanse and shrinks
automatically with actual usage.

Containers & orchestrators

(New) Serverless functions
& overscriptions

Serverless functions, or Function-as-a-service (FaaS)

• FaaS is an example of serverless computing to simply deployment of event-driven function calls

• Examples

• Netflix: media encoding, thumbnailing, content recommendation

• Airbnb: user authentication, process booking requests, payment

• Coca-cola: supply-chain operations, personalized promotions

Resource oversubscription

Overbooking of
cloud resources

100 seats, sell 105 tickets

• (Almost) direct revenue boost , given the base at $100B!
• But still, new technologies needed

Resource oversubscription

• Technology prerequisites:
• Virtualization to cut CPU/disk/memory into fine granularity
• Quick allocation / migration
• Multi-tenancy over shared resources

• Key problem for oversubscription:
• Increase oversubscription rate, while reduce/prevent violations w/ user SLAs
 SLA can be latency of query, service availability, etc.

• Mechanisms for an oversubscribed system:
• Similar PLB but at high resource usages

Outline

• Brief history of cloud computing

• Cloud native technologies

• Current practice and opportunities of AI on cloud

Practice and opportunities of AI on GPU cloud

• Cloud native technologies are open-box
solutions for may AI use cases

• Key idea: containerizing your models

https://www.cncf.io/wp-content/uploads/2024/03/cloud_native_ai24_031424a-2.pdf

Practice and opportunities of AI on GPU cloud

• But, some cloud-native ideas couldn’t be applied

• GPU virtualization and oversubscription

• Fine-grained scheduling and operations

• Each container is a big black-box

User / App 1

Resource oversubscription for GPUs?

Tight coupling between
resource specification and allocation

User / App 2

GPU(s) 1

GPU(s) 2

User / App 3 GPU(s) 3

This means it’s hard to switch context / allocation, even when the resource is in idle.

User / App 1

Breaking the tight coupling between apps & allocation

“Virtulizating” GPUs into thread and memory blocks,
But, big engineering challenges

User / App 2

GPU 1

GPU 2

User / App 3 GPU 3 Resource pool

vGPU vGPU

vGPU vGPU

vGPU vGPU

C
o

m
p

ilers, R
u

n
tim

e
&

 R
eso

u
rce m

an
ager

Looking forward

• Multi-tenancy in AI workloads
• Users, apps, tasks, models, adapters, prompts, …

• Breaking the black-boxes
• Co-design of AI and cloud systems

• Cloud-native → AI-native

Punica: Multi-Tenant LoRA Serving

Looking forward

• New opportunities in cloud AI
• New cloud with heterogeneous, ephemeral infra

 spot instances, intermittent/green power

• New services: multi-agent AI, RAGs etc.

• New hardware & architecture: RISC-V AI chips, AISC chips

• New applications: AI-for-X

ChatDev

What we have covered & not covered

• MLsys foundations

• Automatic differentiation

• Hardware acceleration

• Parallelism and training techniques

• Transformers, attention and optimizations

• Serving LLMs

• Fine-tuning and alignment techniques

• AI for systems

• Application systems

• ML compilers

• Cloud systems for AI

• Compute graph optimization

• Heterogeneous runtime

• Serving multi-modal models

• Serving mixture-of-experts models

• ML ops

• Many more..

Covered Not covered

Wish you all the best in your PhD / Masters journey!

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) Cloud systems for AI
	Slide 2: From LLMs to the cloud
	Slide 3: Outline
	Slide 4: A history lesson
	Slide 5: A history lesson
	Slide 6: Brief history of cloud computing
	Slide 7: Cloud computing offerings
	Slide 8: Cloud computing offerings
	Slide 9: However,
	Slide 10: Looking for all kinds of solutions…
	Slide 11: An analogy: cargo transportation
	Slide 12: What are the possibilities
	Slide 13: The challenge continued
	Slide 14: Shipping containers
	Slide 15: Container for code?
	Slide 16: Comparing containers and VMs
	Slide 17: Containers and VMs together
	Slide 18: Cloud native technologies
	Slide 19: Rise of containers and Kubernetes (K8s)
	Slide 20: Rise of containers and Kubernetes (K8s)
	Slide 21: Architecture overview
	Slide 22: Master components
	Slide 23: Node components
	Slide 24: Rise of containers and Kubernetes (K8s)
	Slide 25: Rise of containers and Kubernetes (K8s)
	Slide 26: Outline
	Slide 27: Placement and load balancing (PLB)
	Slide 28: Placement and load balancing (PLB)
	Slide 29: Placement and load balancing (PLB)
	Slide 30: Failovers
	Slide 31: Failovers
	Slide 32: Serverless computing
	Slide 33: Serverless functions, or Function-as-a-service (FaaS)
	Slide 34: Resource oversubscription
	Slide 35: Resource oversubscription
	Slide 36: Outline
	Slide 37: Practice and opportunities of AI on GPU cloud
	Slide 38: Practice and opportunities of AI on GPU cloud
	Slide 39: Resource oversubscription for GPUs?
	Slide 40: Breaking the tight coupling between apps & allocation
	Slide 41: Looking forward
	Slide 42: Looking forward
	Slide 43: What we have covered & not covered
	Slide 44

