CS6216 Advanced Topics in Machine Learning (Systems)

MLsys Foundations

Yao LU
21 Aug 2024

National University of Singapore
School of Computing

ML Systems Overview

* Three components

* ML tasks
* Training / tuning

* |Inference

Compute

Models

e What are models?

| —
—

]
| E—

* Models = algorithms?

a1 ey Y
o s 4
ad [T ‘ I'-_
arf " S e il
ar anl] “- Iy .
2 104 . T :) ‘
R S 3 Layer Layer

Clustering Random Forest Perceptron

B — e How to define, store & use models?

Linear regression PCA Reinforcement learning

Model definitions

* PyTorch, Tensorflow, JAX etc. use functional declarations

* Direct mapping to a compute graph, no ambiguity

class ToyModel (nn.Module): X
def __init__(): p
supex (ToyModel,).__dinit__ ()

.netl = torch.nn.Linear(10, 10).to('cuda:@"')
.relu = torch.nn.RelLU() y
.net2 = torch.nn.Lineax (10, 5).to('cuda:1"')
Er)i]?

def forward(
X = .relu(.netl(x.to(a:0')))
retuxrn net2(x.to('cuda:1')) Z q

Model definition

Algorithmic workflows

« Various ML systems exist for Boosting trees, Graph neural networks etc.

e This lecture focuses on Large Generative Models (LGMs)
* Deep neural networks trained w/ Stochastic Gradient Descent (SGD)

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)
Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs »s8 Model prediction

ooooooo
CCCCCC

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)
Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs »s8 Model prediction

i
ooooooo

=e= Forward propagation Inference stops here

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)
Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs »s8 Model prediction

i

ooooooo

4 Backward propagation =~ Compute loss/gradients

4

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)
Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

T A Gy
w i=w — YL =w; nle](Wl)

=1

Back propagation by example

ce=(a+b)- (b+ 1), compute the following:

de Applying chain rule to compute gradient

ac * Back-tracking from the root to write down partial

e derivatives. + for branches, * for adjacent nodes

de

oo

+ +1 ae_
OO da
ae_

=

Back propagation by example

ce=(a+b) (b+ 1), compute the following :

ae_a(c-d)_d

ac ac

de 0d(c-d)
od ad
de B de Odc B
da dc da
de B de dc

C

1=d

de dd

b _ac ab T

5d b ¢t

Applying chain rule to compute gradient

Back-tracking from the root to write down partial

derivatives. + for branches, * for adjacent nodes

Back propagation by example

ce=(a+b) (b+ 1), compute the following :

de d(c-d) Applying chain rule to compute gradient

e ac _ dc « Back-tracking from the root to write down partial

derivatives. + for branches, * for adjacent nodes
de Jd(c-d)

e @ ad = od =C * Given the actual Loss, compute gradient digits
A lot of repetitive compute
+ +1 de de Oc
e G e =3¢ 92" d-1=d Proper caching & reusing in the graph nodes

de de dc de 0dd

=c+d

9b _ac ab T ad ap

Building forward & backward compute graph

class ToyModel (nn.Module):
def __init__(self):
super(ToyModel, self).__init__()
self.netl = torch.nn.Linear(10, 10).to('cuda:@"')
.relu = torch.nn.RelLU()
1f.net2 = toxch.nn.Lineax (10, 5).to('cuda:1')

def forward(s=1f, x):

x = self.relu(self.netl(x.to('cuda:0')))
return net2(x.to('cuda:1'))

Model definition

Compute

graph
builder

Forward
computation
graph

Backward
computation
graph

Back propagation for LSTM

* Long-short term memory (LSTM)

ft:O'g (fo xt‘l‘Utht_l'*‘bf)
it:O'g (WIX xt+UiXht_1+bi)

OtZO’g (WOX xt+UOXht—1+bO)
C,t = O¢ (WC X Xt + UC X ht—l s bC)
¢t = fr €1 + i

hy = o - oc(ct)

* Derive the back-prop formulations for all parameters

* |[nstructor’s experience 10 years back:
* 1 full page of equations, 30~40 steps
* Implementing on GPU, extremely hard to debug

How about very large neural networks?

* We need
* Automatic computation of gradients
* Optimization with proper caching and compute node reuse

AN ——
! \ /
i ! \ i \
i ' '
' i i
1 1 h 1
| H i
i1 y
i

Quiz : back propagation for MLP

* MLP is a simple DNN, where a single perceptron is defined as:

y=oc(W - -x+b)
* A 2-layer perceptron for univariate regression with [, loss:

z=oc(W - -u+b>b) hint: ' (x) = a(x)(1 — a(x))
u=oclV-x+b>b)

derive gradients for W and V.

Computational graph construction by step

Construct the compute graph for y = softmax(W - x) with cross entropy loss
1. Construct forward graph

y
matmult H softmax]——v

Computational graph construction by step

Construct the compute graph for y = softmax(W - x) with cross entropy loss

1. Construct forward graph

2. Addloss compute nodes

y
matmult]—+£ softmax }———

log

mul

cross_entropy

Computational graph construction by step

Construct the compute graph for y = softmax(W - x) with cross entropy loss

1. Construct forward graph

2. Addloss compute nodes

W _grad
4—

y cross_entropy

matmult softmax

4

{

matmult-
transpose

¥ N v
}+———{ softmax-grad }+{i log-grad]«———{ mul <}P——— 1 / batch_size

3. Construct backward graph by automatic differentiation More details in the next lecture

Computational graph construction by step

Construct the compute graph for y = softmax(W - x) with cross entropy loss
1. Construct forward graph

2. Addloss compute nodes

assign W

A

sub
A g

matmult softmax

W_grad matmult- :
[Mﬂl }——————{ transpose softmax-grad }P{ log-grad J+——{_ mul J+——— 1 / batch_size

learning rate

3. Construct backward graph by automatic differentiation
4. Update model weights

Mapping compute graph to actual runtime

* Key factors to consider:

* Graph dependency , cross_entropy
+ Parallelism & batching i —
* Driver & API
—{ softmax-grad +{ log-grad —{ ml +— 1, paten size
 CPU, GPU, TPU, FPGA, etc. -
* Each architecture has corresponding libraries and APls @ﬁ

* Optimizations:
* Operator code-gen and fusion
* Graph-level optimizations

Execution of the compute graph: data parallelism

4 N
ML Model -
A |
Gradients

Aggregation

. GPUN

1. Partition training data into batches 2. Compute the gradients of 3. Aggregate gradients
each batch on a GPU across GPUs

Execution of the compute graph: model parallelism

« Split a model into multiple subgraphs and assign them to different devices

e

Transfer
ML Model \YileYoI=) intermediate
. |
Parallelism o
_I | \ devices
A yahh HIEN

Training Dataset

Execution of the compute graph: pipeline parallelism

« Split a model into multiple subgraphs and assign them to different devices.
Run them by proper scheduling.

2

—

—J» cache

ML Model

Pipeline

Parallelism

> aggregate

Training Dataset

W i=w; —WIL(w) =WL—£Z VI;w)

A1

Summary: core modules in MLsys

* Graph optimization e Storage & caching
* Model specific technologies Data preparation & quality

e
¥

* Resource & job scheduling
* Operation & tuning
* Multiplexing

* Kernel optimization

 Code generation
* New hardware

R&D optimizes for
* Training / Tuning:

efficiency & scalability

Inference / Serving:

latency & throughput

Cloud efficiency

Outlook of the course content

* Upcoming lectures
* Task/Model specific technologies
* LLM serving
* Scale up and out
* Al for systems

* Overview of Homework 2-4
* HW2: back propagation and autograd
« HW3: framework & LLM inference
* HW4: LLM serving

Reading list for the next lecture

* How to read a paper

* TensorFlow: A System for Large-Scale Machine Learning
OSDI 2016

* Questions will be posted on Canvas

http://ccr.sigcomm.org/online/files/p83-keshavA.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

No in-person lecture next week

* Lecture recordings will be provided.

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) MLsys Foundations
	Slide 2: ML Systems Overview
	Slide 3: Models
	Slide 4: Model definitions
	Slide 5: Algorithmic workflows
	Slide 6: Algorithmic workflows: recap
	Slide 7: Algorithmic workflows: recap
	Slide 8: Algorithmic workflows: recap
	Slide 9: Algorithmic workflows: recap
	Slide 10: Back propagation by example
	Slide 11: Back propagation by example
	Slide 12: Back propagation by example
	Slide 13: Building forward & backward compute graph
	Slide 14: Back propagation for LSTM
	Slide 15: How about very large neural networks?
	Slide 16: Quiz : back propagation for MLP
	Slide 17: Computational graph construction by step
	Slide 18: Computational graph construction by step
	Slide 19: Computational graph construction by step
	Slide 20: Computational graph construction by step
	Slide 21: Mapping compute graph to actual runtime
	Slide 22: Execution of the compute graph: data parallelism
	Slide 23: Execution of the compute graph: model parallelism
	Slide 24: Execution of the compute graph: pipeline parallelism
	Slide 25: Summary: core modules in MLsys
	Slide 26: Outlook of the course content
	Slide 27: Reading list for the next lecture
	Slide 28: No in-person lecture next week

