
CS6216 Advanced Topics in Machine Learning (Systems)

Automatic Differentiation

Yao LU
28 Aug 2024

National University of Singapore
School of Computing

Recap: algorithmic workflows

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce partial
gradients / errors for each trainable weight

3. Weight update: use the loss value to update model weights

Model inputs Prediction

𝑤 ← 𝑤 − 𝜂∇w L w

Label
Loss

Ways to compute gradients

• Numerical differentiation

• Symbolic differentiation

• Forward mode automatic differentiation

• Backward mode automatic differentiation

Numerical Differentiation

• Directly compute the partial gradient by symbolic definitions
𝜕𝑓 𝜃

𝜕𝜃𝑖
= lim

𝜖→0

𝑓 𝜃 + 𝜖𝑒𝑖 − 𝑓 𝜃

𝜖

 ⇒Hard to work correctly due to precision / numerical errors

Symbolic Differentiation

• Use the model formula to derive gradients by sum, product and chain rules

•
𝜕 𝑓 𝜃 +𝑔 𝜃

𝜕 𝜃
=

•
𝜕 𝑓 𝜃 𝑔 𝜃

𝜕 𝜃
=

•
𝜕𝑓(𝑔 𝜃)

𝜕 𝜃
=

 ⇒ Lots of repeated compute: 𝑓 𝜃 = ς𝑖=1
𝑛 𝜃𝑖 ,

𝑓 𝜃

𝜕𝜃𝑘
= ς𝑗≠𝑘

𝑛 𝜃𝑗

Symbolic Differentiation

• Use the model formula to derive gradients by sum, product and chain rules

•
𝜕 𝑓 𝜃 +𝑔 𝜃

𝜕 𝜃
=

𝜕𝑓 𝜃

𝜕𝜃
+

𝜕𝑔 𝜃

𝜕𝜃

•
𝜕 𝑓 𝜃 𝑔 𝜃

𝜕 𝜃
= 𝑔(𝜃) ×

𝜕𝑓 𝜃

𝜕𝜃
+ 𝑓(𝜃) ×

𝜕𝑔 𝜃

𝜕𝜃

•
𝜕𝑓(𝑔 𝜃)

𝜕 𝜃
=

𝜕𝑓 𝑔(𝜃)

𝜕𝑔(𝜃)
×

𝜕𝑔 𝜃

𝜕𝜃

 ⇒ Lots of repeated compute: 𝑓 𝜃 = ς𝑖=1
𝑛 𝜃𝑖 ,

𝑓 𝜃

𝜕𝜃𝑘
= ς𝑗≠𝑘

𝑛 𝜃𝑗

Recap: compute graph

• Each node represents an (intermediate) value in the

computation. Edges present input/output relations.

Forward propagation steps

𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 =

𝑣4 =

𝑣5 =

𝑣6 =

𝑣7 =

𝑦 =

Recap: compute graph

• Each node represents an (intermediate) value in the

computation. Edges present input/output relations.

Forward propagation steps

𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Forward Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

• Tweak the input and watch how the output
changes

- How much do you have?
- Guess

- $100?
- Too much

- $50?
- Too few

Forward Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑣𝑖

𝜕𝑥1
,

we can compute Δ𝑣𝑖 by tweaking the inputs and perform

forward propagation:

Δ𝑣1 = 1

Δ𝑣2 = 0

Δ𝑣3 =

Δ𝑣4 =

Δ𝑣5 =

Δ𝑣6 =

Δ𝑣7 =

𝜕𝑦

𝜕𝑥1
=

Forward Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑣𝑖

𝜕𝑥1
,

we can compute Δ𝑣𝑖 by tweaking the inputs and perform

forward propagation:

Δ𝑣1 = 1

Δ𝑣2 = 0

Δ𝑣3 =
Δ𝑣1

𝑣1
= 0.5

Δ𝑣4 = Δ𝑣1𝑣2 + Δ𝑣2𝑣1 = 1 × 5 + 0 × 2 = 5

Δ𝑣5 = Δ𝑣2 cos 𝑣2 = 0 × cos 5 = 0

Δ𝑣6 = Δ𝑣3 + Δ𝑣4 = 0.5 + 5 = 5.5

Δ𝑣7 = Δ𝑣6 − Δ𝑣5 = 5.5 − 0 = 5.5

𝜕𝑦

𝜕𝑥1
= Δ𝑣7 = 5.5

Forward Mode Automatic Differentiation (AutoDiff)

• However, each input 𝑥𝑖 needs a whole forward propagation

 ⇒Very expensive

 ⇒Hard to set proper Δ𝑥, know Δ𝑦 only

 ⇒Often used to check the correctness of coding

Reverse Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖
,

we can compute Δ𝑣𝑖 in a reverse order of the graph

Δ𝑣7 =
𝜕𝑦

𝜕𝑣7
= 1

Δ𝑣6 =

Δ𝑣5 =

Δ𝑣4 =

Δ𝑣3 =

Δ𝑣2 =

Δ𝑣1 =

Reverse Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖
,

we can compute Δ𝑣𝑖 in a reverse order of the graph

Δ𝑣7 =
𝜕𝑦

𝜕𝑣7
= 1

Δ𝑣6 = Δ𝑣7 ×
𝜕𝑣7

𝜕𝑣6
= Δ𝑣7 × 1 = 1

Δ𝑣5 = Δ𝑣7 ×
𝜕𝑣7

𝜕𝑣5
= Δ𝑣7 × −1 = −1

Δ𝑣4 = Δ𝑣6 ×
𝜕𝑣6

𝜕𝑣4
= Δ𝑣6 × 1 = 1

Δ𝑣3 = Δ𝑣6 ×
𝜕𝑣6

𝜕𝑣3
= Δ𝑣6 × 1 = 1

Δ𝑣2 = Δ𝑣5 ×
𝜕𝑣5

𝜕𝑣2
+ Δ𝑣4 ×

𝜕𝑣4

𝜕𝑣2
= Δ𝑣5 × cos 𝑣2 + Δ𝑣4 × 𝑣1 = − cos 5 + 2

Δ𝑣1 = Δ𝑣4 ×
𝜕𝑣4

𝜕𝑣1
+ Δ𝑣3 ×

𝜕𝑣3

𝜕𝑣1
= Δ𝑣4 × 𝑣2 + Δ𝑣3 ×

1

𝑣1
= 5 +

1

2
= 5.5

Derivation for branches
• In reverse model AutoDiff, gradients are summed up from branches

• Define partial adjoint Δ𝑣𝑖→𝑗 = Δ𝑣𝑗 ×
𝜕𝑣𝑗

𝜕𝑣𝑖
 for each pair of adjacent node 𝑖, 𝑗

• Then for a node with multiple outbound pathways,

Δ𝑣𝑖 = ෍

𝑗∈adj(𝑖)

Δ𝑣𝑖→𝑗

 We can compute partial adjoints, and then sum them together.

Δ𝑣1 =
𝜕𝑦

𝜕𝑣1
=

𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣2
×

𝜕𝑣2

𝜕𝑣1
+

𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣3
×

𝜕𝑣3

𝜕𝑣1

= Δ𝑣2 ×
𝜕𝑣2

𝜕𝑣1
+ Δ𝑣3 ×

𝜕𝑣3

𝜕𝑣1

Reverse Model AutoDiff Algorithm

Reverse Model AutoDiff Algorithm

Key is to compute the adjoint values for each node and construct the graph on the fly.

out: dictionary to record a list of partial adjoints for each node

Propagates partial adjoint to its input node

Reverse Model AutoDiff Algorithm

Reverse Model AutoDiff Algorithm

id = identity function

Reverse Model AutoDiff Algorithm

id = identity function

Reverse Model AutoDiff Algorithm

id = identity function

Reverse Model AutoDiff Algorithm

id = identity function

Reverse Model AutoDiff Algorithm

id = identity function

Reverse Model AutoDiff on discrete data structures

• \

Forward propagation:

𝑑 = "cat": 𝑎0, "dog": 𝑎1

𝑏 = 𝑑 "cat"

𝑣 = 𝑓(𝑏)

• Define adjoint values in the same way as in the forward propagation.

Define adjoint data structure

Δ𝑑 = "cat":
∂y

∂𝑎0
, "dog":

𝜕𝑦

𝜕𝑎1

Reverse AutoDiff:

Δ𝑏 =
𝜕𝑣

𝜕𝑏
× Δ𝑣

Δ𝑑 = {"cat": Δ𝑏}

Compute in-place vs. Reverse Model AutoDiff
Compute in-place Reverse mode AutoDiff
 w/ compute graph

• Run backprop on the forward graph

• Used in earlier frameworks (caffe etc.)

• Construct separate graph nodes for adjoints

• Used in modern frameworks (Pytorch etc.)

Ways to compute gradients

Pros Cons

Numerical differentiation

Intuitive & easy to compute

Numerical error

Symbolic differentiation Repeated compute

Forward model AutoDiff Repeated compute

Backward model AutoDiff Scalable & saves compute Memory consumption

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) Automatic Differentiation
	Slide 2: Recap: algorithmic workflows
	Slide 3: Ways to compute gradients
	Slide 4: Numerical Differentiation
	Slide 5: Symbolic Differentiation
	Slide 6: Symbolic Differentiation
	Slide 7: Recap: compute graph
	Slide 8: Recap: compute graph
	Slide 9: Forward Mode Automatic Differentiation (AutoDiff)
	Slide 10: Forward Mode Automatic Differentiation (AutoDiff)
	Slide 11: Forward Mode Automatic Differentiation (AutoDiff)
	Slide 12: Forward Mode Automatic Differentiation (AutoDiff)
	Slide 13: Reverse Mode Automatic Differentiation (AutoDiff)
	Slide 14: Reverse Mode Automatic Differentiation (AutoDiff)
	Slide 15: Derivation for branches
	Slide 16: Reverse Model AutoDiff Algorithm
	Slide 17: Reverse Model AutoDiff Algorithm
	Slide 18: Reverse Model AutoDiff Algorithm
	Slide 19: Reverse Model AutoDiff Algorithm
	Slide 20: Reverse Model AutoDiff Algorithm
	Slide 21: Reverse Model AutoDiff Algorithm
	Slide 22: Reverse Model AutoDiff Algorithm
	Slide 23: Reverse Model AutoDiff Algorithm
	Slide 24: Reverse Model AutoDiff on discrete data structures
	Slide 25: Compute in-place vs. Reverse Model AutoDiff
	Slide 26: Ways to compute gradients

