CS6216 Advanced Topics in Machine Learning (Systems)

Parallelism and Training Techniques

Yao LU 11 Sep 2024

National University of Singapore School of Computing

Mapping compute graph to actual runtime

- Key factors to consider:
 - Graph dependency
 - Parallelism & batching
 - Driver & API

- CPU, GPU, TPU, FPGA, etc.
 - Each architecture has corresponding libraries and APIs

- Optimizations:
 - Operator code-gen and fusion
 - Graph-level optimizations

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- 2. Backward propagation: run the model in reverse to produce error for each trainable weight
- 3. Weight update: use the loss value to update model weights

Execution of the compute graph: data parallelism

1. Partition training data into batches

2. Compute the gradients of each batch on a GPU

3. Aggregate gradients across GPUs

Execution of the compute graph: data parallelism

1. Partition training data into batches

2. Compute the gradients of each batch on a GPU

3. Aggregate gradients across GPUs

Data parallelism: Parameter Server (OSDI14)

Workers push gradients to parameter servers and pull updated parameters back

Data parallelism: Parameter Server (OSDI14)

- Centralized communication: all workers communicate with parameter servers for weights update; cannot scale to large numbers of workers
- Can we decentralize communication in DNN training?

Data parallelism: Parameter Server (OSDI14)

- Centralized communication: all workers communicate with parameter servers for weights update; cannot scale to large numbers of workers
- Can we decentralize communication in DNN training?
- AllReduce: perform element-wise reduction across multiple devices

Ways of AllReduce

- Naïve AllReduce
- Ring AllReduce
- Tree AllReduce
- Butterfly AllReduce

Naïve AllReduce

- Each worker can send its local gradients to all other workers
- If we have N workers and each worker contains M parameters
- Overall communication: N * (N-1) * M parameters
- Issue: each worker communicates with all other workers; same scalability issue as parameter server

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- After step 1, each worker has the aggregated version of M/N parameters

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times
- Overall communication: 2 * M * N parameters
 - Aggregation: M * N parameters
 - Broadcast: M * N parameters

Tree AllReduce

- Construct a tree of N workers;
- Step 1 (Aggregation): each worker sends M parameters to its parent; repeat log(N) times
- Step 2 (Broadcast): each worker sends M parameters to its children; repeat log(N) times
 Worker 6

Tree AllReduce

- Construct a tree of N workers;
- Step 1 (Aggregation): each worker sends M parameters to its parent; repeat log(N) times
- Step 2 (Broadcast): each worker sends M parameters to its children; repeat log(N) times
- Overall communication: 2 * N * M parameters
 - Aggregation: M * N parameters
 - Broadcast: M * N parameters

Butterfly AllReduce

Butterfly AllReduce

- Repeat log(N) times:
 - 1. Each worker sends M parameters to its target node in the butterfly network
 - 2. Each worker aggregates gradients locally
- Overall communication: N * M * log(N) parameters

Comparing AllReduce methods

	Parameter	Naïve	Ring	Tree	Butterfly
	Server	AllReduce	AllReduce	AllReduce	AllReduce
Overall communication	$2 \times N \times M$	$N^2 \times M$	$2 \times N \times M$	$2 \times N \times M$	$N \times M \times \log N$

Ring AllReduce v.s. Tree AllReduce v.s. Parameter Server

Ring AllReduce:

- Best latency
- Balanced workload across workers
- More scalable since each worker sends 2*M parameters (independent to the number of workers)

Model

Data

 $p'' = p' + \Delta p$ Parameter Servers $\Delta p'$ Replicas

All workers send M parameters to parameter servers and receive M parameters from servers Latency: M * N / bandwidth

Each worker sends M/N parameters per iteration; repeat for 2*N iterations Latency: M/N * (2*N) / bandwidth

Worker A

Worker C

 r_0 r_1 r_2 r_3

Worker D

 $r_i = a_i + b_i + c_i + d_i$

 r_1 r_2 r_3

 r_1 r_2 r_3

Worker B

 r_1 r_2 r_3

Each worker sends M parameters per iteration; repeat for 2^{*log(N)} iterations Latency: M * 2 * log(N) / bandwidth

Large model training challenges

	Bert-		Turing	
	Large	GPT-2	17.2 NLG	GPT-3
Parameters	0.32B	1.5B	17.2B	175B
Layers	24	48	78	96
Hidden Dimension	1024	1600	4256	12288
Relative				
Computation	1x	4.7x	54x	547x
Memory Footprint	5.12GB	24GB	275GB	2800GB

NVIDIA V100 GPU memory capacity: 16G/32G NVIDIA A100 GPU memory capacity: 40G/80G

Out of Memory

Execution of the compute graph: tensor / model parallelism

• Split a model into multiple subgraphs and assign them to different devices

Tensor model parallelism

• Partition parameters/gradients within a layer

Tensor Model Parallelism (partition output)

Tensor Model Parallelism (partition output)

R

Forward	Backward	Gradients
Processing	Propagation	Sync
$O(B * C_{out})$	$O(B * C_{out})$	0

Communication Cost of Tensor Model Parallelism

- Data parallelism: $O(C_{out} * C_{in})$
- Tensor model parallelism (partition output): $O(B * C_{in})$
- Tensor model parallelism (reduce output): $O(B * C_{out})$
- The best strategy depends on the model size and underlying infrastructures

Combine data and model parallelism

Convolutional Neural Networks

 Convolve the filter with the image: slide over the image spatially and compute dot products

Parallelizing Convolutional Neural Networks

- Convolutional layers
 - 90-95% of the computation
 - 5% of the parameters
 - Very large intermediate activations
- Fully-connected layers
 - 5-10% of the computation
 - 95% of the parameters
 - Small intermediate activations
- How to parallelize CNNs?

Data parallelism

Tensor model parallelism

Parallelizing Convolutional Neural Networks

- Data parallelism for convolutional layers
- Tensor model parallelism for fully-connected layers

Parallelizing Transformers

• Transformer: attention mechanism for language understanding

Parallelizing Fully-Connected Layers in Transformers

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Parallelizing Self-Attention Layers in Transformers

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Parallelizing Transformers

Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Execution of the compute graph: pipeline parallelism

• Split a model into multiple subgraphs and assign them to different devices. Run them by proper scheduling.

Training Dataset

$$w_{i} \coloneqq w_{i} - \gamma \nabla L(w_{i}) = w_{i} - \frac{\gamma}{n} \sum_{j=1}^{n} \nabla L_{j}(w_{i})$$

Issues with tensor / model parallelism

- Under-utilization of compute resources
- Low overall throughput due to resource utilization

Model Parallelism

Pipeline parallelism

- Mini-batch: the number of samples processed in each iteration
- Divide a mini-batch into multiple micro-batches
 (by partitioning the compute graph)
- Pipeline the forward and backward computations across micro-batches

Model Parallelism

Pipeline parallelism

- Mini-batch: the number of samples processed in each iteration
- Divide a mini-batch into multiple micro-batches
 (by partitioning the compute graph)
- Pipeline the forward and backward computations across micro-batches

Improving resource utilization

Pipeline parallelism: device utilization

- *m* : micro-batches in a mini-batch
- *p*: number of pipeline stages
- All stages take t_f/t_b to process a forward (backward) micro-batch

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Improving pipeline parallelism efficiency

- *m* : number of micro-batches in a mini-batch
 - Increase mini-batch size or reduce micro-batch size
 - Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes reduce GPU utilization
- *p*: number of pipeline stages
 - Decrease pipeline depth
 - Caveat: increase stage size

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Pipeline parallelism: memory requirement

• We need to keep the intermediate activations of all micro- batches before back propagation

Can we improve the pipeline schedule to reduce memory requirement?

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Pipeline parallelism with 1F1B schedule

- One-Forward-One-Backward in the steady state
- Limit the number of in-flight micro-batches to the pipeline depth
- Reduce memory footprint of pipeline parallelism
- Doesn't reduce pipeline bubble

Can we reduce pipeline bubble?

in-flight mciro-batches = 4

Pipeline parallelism with 1F1B schedule

Pipeline parallelism with GPipe's schedule

Pipeline parallelism with interleaved 1F1B schedule

- Further divide each stage into v sub-stages
- The forward (backward) time of each sub-stage is $\frac{t_f}{n}(\frac{t_b}{n})$

Reduce bubble time at the cost increased communication

Pipeline parallelism with interleaved 1F1B schedule

Pipeline parallelism by partitioning computational graphs

Strategy 1: Inter-operator Parallelism

Strategy 2: Intra-operator Parallelism

Sub Device 2

Trade-off

Inter-o

	Inter-operator Parallelism	Intra-operator Parallelism
Communication	Less	More
Device Idle Time	More	Less

L. Zheng, et al. Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. OSDI 2022.

Pipeline parallelism by partitioning computational graphs

Multiple intra-op strategies for a single node

Pipeline the execution for inter-op parallelism

Combine Intra-op and Inter-op

Training Throughput of an MoE Model

Alpa compiler: hierarchical optimization

Graph Partitioning

or

Improving resource utilization on heterogeneous (datacenter) infrastructures

Stage with intra-operator parallelization

Integer Linear Programming Formulation

Minimize Computation cost + Communication cost

More details on the ILP algorithm can be found in the paper.

Compilation time optimization

Communication-aware operator clustering in ILP & DP

Early stopping in DP

Distributed Compilation

Alpa Compilation Time: < 40 min for the largest experiment.

• Can be further reduced by at least 50% with search space pruning.

Runtime orchestration

Evaluation of Alpa

GPT (up to 39B)

Match specialized manual systems.

GShard MoE (up to 70B)

Outperform the manual baseline by up to 8x.

Wide-ResNet (up to 13B)

Generalize to models without manual plans.

Weak scaling results where the model size grow with #GPUs. Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total).

ML serving on heterogeneous (edge) infrastructures

Data systems are growing into cloud + edge data centers.

JellyBean: serving & optimizing ML workflows on hybrid cloud

- Maximize overall serving costs by solving:
 - model placement,
 - with estimated accuracy constraints.
- Prior IoT apps manually tune the plans.

- Formulate as an optimization w/ a two-stage solver:
 - Model selection (beam search) + worker assignment (ILP).
 - Simplifying assumptions based on tiered infra & one-way data flow.
- Evaluation on [Nvidia AI city, Visual Question Answering] & different infra setups: At similar accuracy, improve serving costs by 30-60%.

Y. Wu, et al. Serving and Optimizing Machine Learning Workflows on Heterogeneous Infrastructures. VLDB 2023.

Summary: comparing different parallelisms

	Data parallelism	Tensor model parallelism	Pipeline model parallelism
Pros	 ✓ Massively parallelizable ✓ Require no communication during forward/backward 	 ✓ Support training large models ✓ Efficient for models with large numbers of parameters 	 ✓ Support large-batch training ✓ Efficient for deep models ✓ Dynamic cloud architecture
Cons	 Do not work for models that cannot fit on a GPU Do not scale for models with large numbers of parameters 	 Limited parallelizability; cannot scale to large numbers of GPUs Need to transfer intermediate results in forward/backward 	 Limited utilization: bubbles in forward/backward

Summary: comparing different parallelisms

	Data parallelism	Tensor model parallelism	Pipeline model parallelism
Pros	 Massively parallelizable Require no communication during forward/backward 	 ✓ Support training large models ✓ Efficient for models with large numbers of parameters 	 ✓ Support large-batch training ✓ Efficient for deep models ✓ Dynamic cloud architecture
Cons	 Do not work for models that cannot fit on a GPU Do not scale for models with large numbers of parameters 	 Limited parallelizability; cannot scale to large numbers of GPUs Need to transfer intermediate results in forward/backward 	 Limited utilization: bubbles in forward/backward