
CS6216 Advanced Topics in Machine Learning (Systems)

Parallelism and Training Techniques

Yao LU
11 Sep 2024

National University of Singapore
School of Computing

Mapping compute graph to actual runtime

• Key factors to consider:
• Graph dependency
• Parallelism & batching
• Driver & API

• CPU, GPU, TPU, FPGA, etc.
• Each architecture has corresponding libraries and APIs

• Optimizations:
• Operator code-gen and fusion
• Graph-level optimizations

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

Model inputs Model prediction

𝑤𝑖 ≔𝑤𝑖 −𝛾 ∇ 𝐿 𝑤𝑖 =𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗 (𝑤𝑖)

Execution of the compute graph: data parallelism

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

𝑤𝑖 ≔𝑤𝑖 −𝛾 ∇ 𝐿 𝑤𝑖 =𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗 (𝑤𝑖)

1. Partition training data into batches 2. Compute the gradients of
each batch on a GPU

Gradients
Aggregation

3. Aggregate gradients
across GPUs

Execution of the compute graph: data parallelism

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

𝑤𝑖 ≔𝑤𝑖 −𝛾 ∇ 𝐿 𝑤𝑖 =𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗 (𝑤𝑖)

1. Partition training data into batches 2. Compute the gradients of
each batch on a GPU

Gradients
Aggregation

3. Aggregate gradients
across GPUs

Data parallelism: Parameter Server (OSDI14)

Workers push gradients to

parameter servers and pull

updated parameters back

Data parallelism: Parameter Server (OSDI14)

• Centralized communication: all workers communicate with parameter
servers for weights update; cannot scale to large numbers of workers

• Can we decentralize communication in DNN training?

• Centralized communication: all workers communicate with parameter
servers for weights update; cannot scale to large numbers of workers

• Can we decentralize communication in DNN training?

• AllReduce: perform element-wise reduction across multiple devices

Data parallelism: Parameter Server (OSDI14)

Ways of AllReduce

• Naïve AllReduce

• Ring AllReduce

• Tree AllReduce

• Butterfly AllReduce

Naïve AllReduce

• Each worker can send its local gradients to all other workers

• If we have N workers and each worker contains M parameters

• Overall communication: N * (N-1) * M parameters

• Issue: each worker communicates with all other workers; same scalability
issue as parameter server

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

• After step 1, each worker has the aggregated version of M/N parameters

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters
to the next worker; repeat N times

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters
to the next worker; repeat N times

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters
to the next worker; repeat N times

• Overall communication: 2 * M * N parameters

• Aggregation: M * N parameters

• Broadcast: M * N parameters

Ring AllReduce

Tree AllReduce

• Construct a tree of N workers;

• Step 1 (Aggregation): each worker sends M parameters to its parent;
repeat log(N) times

• Step 2 (Broadcast): each worker sends M parameters to its children;
repeat log(N) times

Worker 0 Worker 1 Worker 2 Worker 3

Worker 4 Worker 5

Worker 6

• Construct a tree of N workers;

• Step 1 (Aggregation): each worker sends M parameters to its parent;
repeat log(N) times

• Step 2 (Broadcast): each worker sends M parameters to its children;
repeat log(N) times

• Overall communication: 2 * N * M parameters

• Aggregation: M * N parameters

• Broadcast: M * N parameters

Tree AllReduce

Butterfly AllReduce

• Repeat log(N) times:

1. Each worker sends M parameters to
its target node in the butterfly
network

2. Each worker aggregates gradients
locally

• Overall communication: N * M * log(N)
parameters

Butterfly AllReduce

Comparing AllReduce methods

Parameter

Server

Naïve

AllReduce

Ring

AllReduce

Tree

AllReduce

Butterfly

AllReduce

Overall

communication

2×𝑁×𝑀 𝑁2×𝑀 2×𝑁×𝑀 2×𝑁×𝑀 𝑁×𝑀× log𝑁

Ring AllReduce v.s. Tree AllReduce v.s. Parameter Server

Each worker sends M/N parameters per

iteration; repeat for 2*N iterations

Latency: M/N * (2*N) / bandwidth

Each worker sends M parameters per

iteration; repeat for 2*log(N) iterations

Latency: M * 2 * log(N) / bandwidth

All workers send M parameters to

parameter servers and receive M

parameters from servers

Latency: M * N / bandwidth

Ring AllReduce:

• Best latency

• Balanced workload across workers

• More scalable since each worker

sends 2*M parameters (independent to

the number of workers)

Bert-

Large GPT-2

Turing

17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative

Computation 1x 4.7x 54x 547x

Memory Footprint 5.12GB 24GB 275GB 2800GB

NVIDIA V100 GPU memory capacity: 16G/32G
NVIDIA A100 GPU memory capacity: 40G/80G

Out of Memory

Large model training challenges

GPU 1

• Split a model into multiple subgraphs and assign them to different devices

GPU 2

ML Model

Training Dataset

Model

Parallelism

Transfer

intermediate

results

between

devices

𝑤𝑖 ≔𝑤𝑖 −𝛾∇𝐿 𝑤𝑖 =𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

Execution of the compute graph: tensor / model parallelism

Tensor model parallelism

• Partition parameters/gradients within a layer

Wx xy =

GPU 1

W1x xy1 =

GPU 2

W2x x=

Tensor Model Parallelism (partition output)

y2

GPU 1

W1

x1 xy1 =

GPU 2

W2

x=

Tensor Model Parallelism (reduce output)
𝑦 = 𝑦1 + 𝑦2

y2 x2

+

input parametersoutput

GPU 1

𝑦 = 𝑊𝑥Data parallelism

W
x1 xy1 =

GPU 2

W
x2

x
y2

=

𝐶𝑜𝑢𝑡

𝐵 Wx xy

𝐵

2

Forward
Processing

Backward
Propagation

Gradients
Sync

0 0 𝑂(𝐶𝑜𝑢𝑡 ∗ 𝐶𝑖𝑛)

Communication Cost of Data Parallelism

= 𝐵

𝐶𝑖𝑛

Comparing data and tensor model parallelism
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛

Forward
Processing

Backward
Propagation

Gradients
Sync

𝑂(𝐵 ∗ 𝐶𝑖𝑛) 𝑂(𝐵 ∗ 𝐶𝑖𝑛) 0

Communication Cost of Tensor Model Parallelism

W1x xy1 =

GPU 2

W2x x=

𝐶𝑖𝑛

GPU 1

y2

𝐵

Tensor Model Parallelism (partition output)

𝐵 Wx xy = 𝐵

Comparing data and tensor model parallelism
𝐶𝑜𝑢𝑡𝐶𝑖𝑛𝐶𝑜𝑢𝑡

𝐶𝑖𝑛

Forward
Processing

Backward
Propagation

Gradients
Sync

𝑂(𝐵 ∗ 𝐶𝑜𝑢𝑡) 𝑂(𝐵 ∗ 𝐶𝑜𝑢𝑡) 0

Communication Cost of Tensor Model Parallelism

GPU 1

W1

x1 xy1 =

GPU 2

W2

x=y2 x2

+

Tensor Model Parallelism (Reduce output)
𝑦 = 𝑦1 + 𝑦2

𝐵 Wx xy = 𝐵

Comparing data and tensor model parallelism
𝐶𝑜𝑢𝑡𝐶𝑖𝑛𝐶𝑜𝑢𝑡

𝐶𝑖𝑛

Comparing data and tensor model parallelism

• Data parallelism: 𝑂(𝐶𝑜𝑢𝑡 ∗ 𝐶𝑖𝑛)

• Tensor model parallelism (partition output): 𝑂(𝐵 ∗ 𝐶𝑖𝑛)

• Tensor model parallelism (reduce output): 𝑂(𝐵 ∗ 𝐶𝑜𝑢𝑡)

• The best strategy depends on the model size and underlying

infrastructures

Combine data and model parallelism

Convolutional Neural Networks

• Convolve the filter with the image: slide over the image spatially and
compute dot products

Parallelizing Convolutional Neural Networks

• Convolutional layers
• 90-95% of the computation
• 5% of the parameters
• Very large intermediate activations

• Fully-connected layers
• 5-10% of the computation
• 95% of the parameters
• Small intermediate activations

• How to parallelize CNNs?

Data parallelism

Tensor model parallelism

Parallelizing Convolutional Neural Networks

• Data parallelism for convolutional layers

• Tensor model parallelism for fully-connected layers

Parallelizing Transformers

• Transformer: attention mechanism for language understanding

E
n
c
o
d
e
r

D
e
c
o
d
e
r

Ashish Vaswani et. al. Attention is all you need.

A Single Transformer Layer

Fully-Connected Layers

Self-Attention Layers

Parallelizing Fully-Connected Layers in Transformers

𝒀 = 𝑮𝒆𝑳𝑼 𝑿×𝑨
𝒁 = 𝑫𝒓𝒐𝒑𝒐𝒖𝒕 𝒀×𝑩

Tensor model parallelism
(partition output)

Tensor model parallelism
(reduce output)

identity layer
reduction layer

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Parallelizing Self-Attention Layers in Transformers

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Parallelizing Transformers

Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

GPU 1

• Split a model into multiple subgraphs and assign them to different devices.

Run them by proper scheduling.

ML Model

Training Dataset

Pipeline

Parallelism

𝑤𝑖 ≔𝑤𝑖 −𝛾∇𝐿 𝑤𝑖 =𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

GPU 2

GPU 1 GPU 2

cache

aggregate

Execution of the compute graph: pipeline parallelism

Issues with tensor / model parallelism

• Under-utilization of compute resources

• Low overall throughput due to resource utilization

op3

op1

op2

op3

op4

Worker 1 op1

Worker 2 op2

Worker 4 op4

loss

Worker 3

Pipeline parallelism

• Mini-batch: the number of
samples processed in each
iteration

• Divide a mini-batch into
multiple micro-batches

• Pipeline the forward and
backward computations
across micro-batches

Model Parallelism

Pipeline Model Parallelism(by partitioning the compute graph)

Pipeline parallelism

• Mini-batch: the number of
samples processed in each
iteration

• Divide a mini-batch into
multiple micro-batches

• Pipeline the forward and
backward computations
across micro-batches

Model Parallelism

Pipeline Model Parallelism

Improving resource utilization

(by partitioning the compute graph)

Pipeline parallelism: device utilization

• 𝑚 : micro-batches in a mini-batch

• 𝑝: number of pipeline stages

• All stages take 𝑡𝑓/𝑡𝑏 to process a forward (backward) micro-batch

𝑚 ∗ 𝑡𝑓 𝑚 ∗ 𝑡𝑏

𝑝

𝑝 - 1 ∗(𝑡𝑓 +𝑡𝑏)

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗ (𝒕𝒇+𝒕𝒃)

=
𝒑 − 𝟏

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃 𝒎

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Improving pipeline parallelism efficiency
• 𝑚 : number of micro-batches in a mini-batch

• Increase mini-batch size or reduce micro-batch size

• Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes
reduce GPU utilization

• 𝑝: number of pipeline stages
• Decrease pipeline depth

• Caveat: increase stage size

𝑝

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗ (𝒕𝒇+𝒕𝒃)

=
𝒑 − 𝟏

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃 𝒎
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

𝑚 ∗ 𝑡𝑓 𝑚 ∗ 𝑡𝑏𝑝 - 1 ∗(𝑡𝑓 +𝑡𝑏)

Pipeline parallelism: memory requirement

• We need to keep the intermediate activations of all micro- batches
before back propagation

Can we improve the pipeline schedule to reduce

memory requirement?

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Pipeline parallelism with 1F1B schedule

• One-Forward-One-Backward in the steady state

• Limit the number of in-flight micro-batches to the pipeline depth

• Reduce memory footprint of pipeline parallelism

• Doesn’t reduce pipeline bubble

Can we reduce pipeline bubble?

Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

in-flight mciro-batches = 4# in-flight mciro-batches = 8

Pipeline parallelism with interleaved 1F1B schedule

• Further divide each stage into 𝑣 sub-stages

• The forward (backward) time of each sub-stage is
𝑡𝑓

𝑣
(

𝑡𝑏

𝑣
)

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗

(𝒕𝒇+𝒕𝒃)
𝒗

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=
𝒗

∗
𝟏 𝒑 − 𝟏

𝒎

Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second
chunk.

Reduce bubble time at the cost increased communication

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏

𝒎

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒗

∗
𝟏 𝒑 − 𝟏

𝒎

Pipeline parallelism with
1F1B Schedule

Pipeline parallelism with
interleaved 1F1B Schedule

Pipeline parallelism with interleaved 1F1B schedule

x submatmul relu matmul

w1 w2

Pipeline parallelism by partitioning computational graphs

Device 1

Device 2

x submatmul relu matmul

Strategy 1: Inter-operator Parallelism

w1 w2

x submatmul relu matmul

Strategy 2: Intra-operator Parallelism

w1 w2

Inter-operator

Parallelism

Intra-operator

Parallelism

Communication Less More

Device Idle Time More Less

Trade-off

L. Zheng, et al. Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. OSDI 2022.

Pipeline parallelism by partitioning computational graphs

x subrelu matmul

w2

matmul

w1

Multiple intra-op strategies for a single node

Row-partitioned Column-partitioned Replicated

x submatmul relu matmul

Combine Intra-op and Inter-op

w1 w2

w3

w2

matmul

matmul

matmul

matmul

matmul

matmul

Pipeline the execution for inter-op parallelism

w1 matmul matmul matmul

Alpa compiler: hierarchical optimization

Computational

Graph

Device

Cluster

Runtime

Orchestration

Inter-op Pass

Intra-op Pass

Cost Estimation

Dynamic Programming

Integer Linear Programming

matmulx

w2

relu softmaxconv convrelu

Computational Graph

w1

add avgpool matmul

k1 k2

Inter-op pass

x

w1 w2

conv relu

k1 k2Stage 1
Stage 2

conv add avgpool matmul relu matmul

Stage 3
Stage 4

softmax

x

w1 w2

conv relu conv add avgpool matmul relu matmul softmax

k1 k2Stage 1 Stage 2 Stage 3 Stage 4

or

or

…

G
ra

p
h

P
a
rt

it
io

n
in

g

Inter-op pass

x

w2

conv convrelu

k1 k2 w1Stage 1
Stage 2

add avgpool

Partitioned Computational Graph

Stage 3
Stage 4

matmul relu matmul softmax

Device Assignment

Inter-op pass

Improving resource utilization on heterogeneous (datacenter) infrastructures

x

w1 w2

conv relu

k1 k2

M

Solved together by

Dynamic Programming

Stage 1
Stage 2

conv add avgpool matmul relu matmul

Stage 3
Stage 4

softmax

N

More details on the

DP algorithm can be

found in the paper.

Inter-op pass

matmul matmul

w1 w2

relu

Stage
Submesh

stage
input

w2Solved by

Integer Linear

Programming

Stage with intra-operator

parallelization

matmul matmul

w1

relu
stage
input

Intra-op pass

Minimize Computation cost + Communication cost

w2

matmul matmul

w1

relu
stage
input

Decision vector

Parallel strategies of each

operator

Intra-op pass

Integer Linear Programming Formulation

More details on the

ILP algorithm can be

found in the paper.

Alpa Compilation Time: < 40 min for the largest experiment.

● Can be further reduced by at least 50% with search space pruning.

Compilation time optimization

Communication-aware

operator clustering in

ILP & DP

Early stopping in DP
Distributed

Compilation

Runtime orchestration

Intra-op Parallelism

…

Inter-op Parallelism

Parallelized

Stage 1

Parallelized

Stage 2

Parallelized

Stage n

Static Mesh

Executable 1

Static Mesh

Executable 2

Static Mesh

Executable n

Compilation

…

Submesh 1

Submesh 2 Submesh n

Cross-mesh

Communication

Evaluation of Alpa

Weak scaling results where the model size grow with #GPUs.

Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total).

Match specialized

manual systems.

GPT (up to 39B) GShard MoE (up to 70B) Wide-ResNet (up to 13B)

Outperform the manual

baseline by up to 8x.

Generalize to models

without manual plans.

ML serving on heterogeneous (edge) infrastructures

Data systems are growing into cloud + edge data centers.

• Maximize overall serving costs by solving:

• model placement,

• with estimated accuracy constraints.

• Prior IoT apps manually tune the plans.

• Formulate as an optimization w/ a two-stage solver:

• Model selection (beam search) + worker assignment (ILP).

• Simplifying assumptions based on tiered infra & one-way data flow.

• Evaluation on [Nvidia AI city, Visual Question Answering] & different infra setups:

 At similar accuracy, improve serving costs by 30-60%.

JellyBean: serving & optimizing ML workflows on hybrid cloud

Y. Wu, et al. Serving and Optimizing Machine Learning Workflows on Heterogeneous Infrastructures. VLDB 2023.

Object
Detection

Object
Detection

Object
Re-ID

Answers

Cameras

Query: track vehicles across cameras.

Data parallelism Tensor model parallelism Pipeline model parallelism

✓ Massively parallelizable

✓ Require no communication during

forward/backward

✓ Support training large models

✓ Efficient for models with large

numbers of parameters

✓ Support large-batch training

✓ Efficient for deep models

✓ Dynamic cloud architecture

❖ Do not work for models that cannot

fit on a GPU

❖ Do not scale for models with large

numbers of parameters

❖ Limited parallelizability; cannot

scale to large numbers of GPUs

❖ Need to transfer intermediate

results in forward/backward

❖ Limited utilization: bubbles in

forward/backward

Pros

Cons

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

GPU 1

GPU 2

ML Model

Training Dataset

Model

Parallelism

Summary: comparing different parallelisms

Summary: comparing different parallelisms

Data parallelism Tensor model parallelism Pipeline model parallelism

✓ Massively parallelizable

✓ Require no communication during

forward/backward

✓ Support training large models

✓ Efficient for models with large

numbers of parameters

✓ Support large-batch training

✓ Efficient for deep models

✓ Dynamic cloud architecture

❖ Do not work for models that cannot

fit on a GPU

❖ Do not scale for models with large

numbers of parameters

❖ Limited parallelizability; cannot

scale to large numbers of GPUs

❖ Need to transfer intermediate

results in forward/backward

❖ Limited utilization: bubbles in

forward/backward

Pros

Cons

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

GPU 1

GPU 2

ML Model

Training Dataset

Model

ParallelismTraining large models requires combining

data/model/pipeline and other parallelization techniques

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) Parallelism and Training Techniques
	Slide 2: Mapping compute graph to actual runtime
	Slide 3: Algorithmic workflows: recap
	Slide 4: Execution of the compute graph: data parallelism
	Slide 5: Execution of the compute graph: data parallelism
	Slide 6: Data parallelism: Parameter Server (OSDI14)
	Slide 7: Data parallelism: Parameter Server (OSDI14)
	Slide 8: Data parallelism: Parameter Server (OSDI14)
	Slide 9: Ways of AllReduce
	Slide 10: Naïve AllReduce
	Slide 11: Ring AllReduce
	Slide 12: Ring AllReduce
	Slide 13: Ring AllReduce
	Slide 14: Ring AllReduce
	Slide 15: Ring AllReduce
	Slide 16: Ring AllReduce
	Slide 17: Ring AllReduce
	Slide 18: Tree AllReduce
	Slide 19: Tree AllReduce
	Slide 20: Butterfly AllReduce
	Slide 21: Butterfly AllReduce
	Slide 22: Comparing AllReduce methods
	Slide 23: Ring AllReduce v.s. Tree AllReduce v.s. Parameter Server
	Slide 24: Large model training challenges
	Slide 25: Execution of the compute graph: tensor / model parallelism
	Slide 26: =
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Comparing data and tensor model parallelism
	Slide 31: Combine data and model parallelism
	Slide 32: Convolutional Neural Networks
	Slide 33: Parallelizing Convolutional Neural Networks
	Slide 34: Parallelizing Convolutional Neural Networks
	Slide 35: Parallelizing Transformers
	Slide 36: A Single Transformer Layer
	Slide 37: Parallelizing Fully-Connected Layers in Transformers
	Slide 38: Parallelizing Self-Attention Layers in Transformers
	Slide 39: Parallelizing Transformers
	Slide 40: Execution of the compute graph: pipeline parallelism
	Slide 41: Issues with tensor / model parallelism
	Slide 42: Pipeline parallelism
	Slide 43: Pipeline parallelism
	Slide 44: Pipeline parallelism: device utilization
	Slide 45: Improving pipeline parallelism efficiency
	Slide 46: Pipeline parallelism: memory requirement
	Slide 47: Pipeline parallelism with 1F1B schedule
	Slide 48: Pipeline parallelism with interleaved 1F1B schedule
	Slide 49: Pipeline parallelism with interleaved 1F1B schedule
	Slide 50: Pipeline parallelism by partitioning computational graphs
	Slide 51: Pipeline parallelism by partitioning computational graphs
	Slide 52: Alpa compiler: hierarchical optimization
	Slide 53: Inter-op pass
	Slide 54: Inter-op pass
	Slide 55: Inter-op pass
	Slide 56: Inter-op pass
	Slide 57: Intra-op pass
	Slide 58: Intra-op pass
	Slide 59: Compilation time optimization
	Slide 60: Runtime orchestration
	Slide 61: Evaluation of Alpa
	Slide 62: ML serving on heterogeneous (edge) infrastructures
	Slide 63: JellyBean: serving & optimizing ML workflows on hybrid cloud
	Slide 64: Summary: comparing different parallelisms
	Slide 65: Summary: comparing different parallelisms

