CS6216 Advanced Topics in Machine Learning (Systems)

Transformers, Attention and Optimizations

Yao LU
18 Sep 2024

National University of Singapore
School of Computing

Seguence prediction

Take a set of input sequence, predict the output sequence

model

T

X1 X5 X3 X4

Predict each output based on history »=/e(x1.t)

Method 1: direct / spot prediction

Va

L]

Direct model
X4 X, X3 Xy

Challenge: inputs of different sizes.

Method 2: Recurrent Neural Networks

Try to maintain a “latent state” that is derived from history

[111

hO —p hl > hz > h3 > h4

T

Xq Xy X3 X4

The information is carried only through h;

“Attention” mechanism

Generally refers to the approach that weighted combine individual states

Attention output

t
Hidden states from ﬁ B — Z
previous layer t= / Site

i=1

Intuitively s; is “attention score” that computes how relevant the position i’s input is
to this current hidden output

There are different methods to compute attention scores

Transformer block and self attention

Atypical transformer block

Z = SelfAttention (XW, XWo, XWy)
Z = LayerNorm (X + Z)
H = LayerNorm(ReLU (ZW)DW, + Z)

. . Txd .
Given three inputs Q,K,V € R “‘queries”, “keys”, “values”

KT
SelfAttention(Q, K, V) = softmax()V
¢ v

output

T

normalize
A

Feed forward

normalize
A

Self-attention

matmul

7}
|

softmax

?

matmul

—

Q

K V

input

Transformer block and self attention

Atypical transformer block

Z = SelfAttention (XW, XWo, XWy)
Z = LayerNorm (X + Z)
H = LayerNorm(ReLU (ZW)DW, + Z)

. . Txd .
Given three inputs Q,K,V € R “‘queries”, “keys”, “values”

— Similarity
KT
SelfAttention(Q,K, V) = Softmax(73)V
[Y
(Scaled Dot-Product Attention) Stienitio_)n ;(c::?cl)er

weights

output

T

normalize
A

Feed forward

normalize
A

Self-attention

matmul

A

softmax

?

matmul

—

Q

K V

input

Self-attention operation

Use q;, k¢, v, to refer to row t of the K matrix

M) [hs] M) e Howto compute the output r,, based on q;, K,V

% one timestep t?

To keep it simple, we will drop suffix t and just
v, v, V3 v, use q to refer to q¢

Self-attention operation

Use q;, k¢, v, to refer to row t of the K matrix

If () f (QKT>
SelfAttention(Q, K,V) = softmax |4
2 Va

hl h2 h3 h4 dt

% + Pre-softmax “attention score”

1
ky ky ks ky Si = ﬁqk?
vy v, vy v, - Weighed average via softmax
;exp(s;) v;
h = z softmax (s);v; = 2 Xp(si) Vi
i Zj exp(s;)

Intuition: s; computes the relevance of k; to the query g,
then we do weighted sum of values proportional to their relevance

Multi-head attention

Multiple “attention heads”, W,k v denotes j-th attention head

— « Apply self-attention in each attention head

hy’

« Concatenate all output heads together as output

kl(j) kz(i) ksgi) kii)
T

Each head can correspond to different kinds of information.

GQA (group query attention): all heads share K, V but have different Q
(K, V cache)

How to get Q K V?

Obtain Q, K,V from previous layer’s hidden state X by linear projection

Q = XW,

K = XWK

V = XWy
L] I PO R) I

|
| Can compute all heads and Q, K,V together then

Linear projection split/reshape out into individual @, K, V with multiple heads

Masked self-attention

In the matrix form, we are computing weighted average over all inputs

hy| |h| |hs| |h,
/_/[:

k| | k| |k| |k
v, v, V3 v,

To maintain casual relation and only attend to some of the inputs (e.g.
skip the red dashed edge on the left), we can add “attention mask”

QK"
MaskedSelfAttention(Q, K, V) = softmax(N — M|V

[0,]>1 00

M =4 % Z.
i =0,/ <i 0

Only attend to previous inputs. Skip the computation that are masked out.

HEEEEEEN =

Attention: O = Softmax(QK') V

X
o

2>

X

Nxd A=QKT:NxN A = mask(A) A=softmax(A) :NxN V:Nxd O=AV:Nxd
[] HEEEEEEE [] [] []
] HEEEEEEEE i = H
5) SEENSNEN) EEEn ek
] EEEEEEEE HEEEE]]
] HEEEEEEEE HEEEER = H
] HEEEEEEE EEEEEEN HEEEEN]]
N HEEEEEEEN HEEEEEEEN HEEEEEEEN O Il

Challenges:

« Large intermediate results

* Repeated reads/writes from GPU device memory

« Cannot scale to long sequences due to O(N”2) intermediate results

Attention optimizations

 LLM Training
 FlashAttention

 LLM Inference
* Recursive Attention
* Flash Decoding
« PagedAttention

Revisit: GPU memory hierarchy

Device global memory

(readable/writable by all
threads)

Per-block shared memory 303332398 ‘
(readable/writable by all $333¢: i ﬁ ?3

threads in a block)

19 TB/s (20 MB)

1.5 TB/s (80 GB)

A = softmax(QKT)
HEEEEEEN

FlashAttention

Key idea: compute attention by blocks to reduce global memory
access

Two main Techniques:

1.Tiling: restructure algorithm to load query/key/value block by
block from global to shared memory

Z2.Recomputation: don't store attention matrix from forward, recompute
It in backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with 10-Awareness

Tiling: decompose large softmax into smaller ones by scaling

Outer Loop
1. Load inputs by blocks from global to K:dxN
shared memory Copy Block to SRAN
Q:Nxd Outer Loop . V:N X d

2. On chip, compute attention output
wrt the block

3. Update output in device memory by
scaling

Compute Block
on SRAM

Inner Loop
doo 121nQ

softmax([A4,,4,]) = [a X softmax(A4,), B X softmax(4,)]

Output to HEM
4 sm(QK")V: N.xd

softmax([A44,4,]) [V] = a X softmax(4,)V; + B X softmax(4,)V, -

2 Inner Loop

FlashAttention

Keys (NxK)

Tiling _—

Q @ tr(K)
NxN

Queries (NxK) Output Values
(NxK) (NxK)

(animation) https://jacksoncakes.com/img/in-post/post-flash-attn/flash-attn-viz.mp4

(Here K is d from last slide)
Animation credit: Francisco Massa

https://jacksoncakes.com/img/in-post/post-flash-attn/flash-attn-viz.mp4

Recomputation: backward pass

By storing softmax normalization factors
from forward (size N), recompute attention in
the backward from inputs in shared memory

Attention

GFLOPs
Global mem access
Runtime

Standard FlashAttention

66.6
40.3 GB
41.7 ms

75.2
4.4 GB
7.3 ms

Outer Loop

o

I Copy Block to SRAM
Outer Loop V:N Xd

>

K:dxN

Sl S s e "
><
S S —
el 1 I
o OI l;ll o
o c
9 - Compute Block =
. on SRAM =
g Copy |)
i = | o
|
|
=

— R

Output to HEM
sm(QK")V: N xd

Inner Loop

FlashAttention

Speed up backward pass with increased FLOPs

FlashAttention v2: threadblock-level parallelism

How to partition FlasshAttention across

thread blocks?

(An A100 has 108 SMMs -> 108 thread

blocks)

« Step 1: assign different heads to different

thread blocks (16-64 heads)

Outer Loop
Zad
K:dxN
Copy Block to SRAM
Q:Nxd Ouiter Loop . V:NXd

Compute Block
on SRAM

Inner Loop
doo 12100

Output to HBEM
sm(QK"V: N xd

Inner Loop

FlashAttention

FlashAttention v2: threadblock-level parallelism

Outer Loop

How to partition FlasshAttention across -
thread blocks? K':dx N

Copy Block to SRAM
(An A100 has 108 SMMs -> 108 thread ; péuter Llop
Q:Nxd ' V:NXd

blocks) "

. |
T | G T
L . g O v | 2
- Step 1: assign different heads to different 2 +-] ComputeBlock 3
thread blocks (16-64 heads) 2 it : : /]
« Step 2: assign different queries : : g
(not K/V) to different thread blocks ' . e ;

Output to HBEM
_ sm(QK"V: N xd
Thread blocks cannot communicate; cannot =

Inner Loop

perform softmax when partitioning keys/values FlashAttention

FlashAttention v2: threadblock-level parallelism

Keys/Values

Block 1
Block 2
Block 3

Block 4
Block 5

Queries

Forward pass

No need to handle workload imbalance.

GPU scheduler automatically loads the next block once the
current one completes.

FlashAttention v2: warp-level parallelism

« How to partition FlashAttention across warps within a thread block?

KT K"
! waro 1 | Waroa. | waros Vs ' Warp 1-4
! Warp1 : Warp 2 : Warp 3 : Warp4 | v
Q ‘o=mEs I e A e e e e / Q 4
Warp 1-4 Warp 1 Warp 1
I
Warp 2 | Warp2 Warp 1-4
______ I
Warp3 Warp 3
Warp 4
______ Warp 4
Accessed by all warps pRERE /

: Split across different warps

(a) FLASHATTENTION (b) FLASHATTENTION-2

Splitting across K/V requires Splitting across Q avoids @
communication to add results communications

Speed (TFLOPs/s)

FlashAttention v2: 2-4x speedup, 10-20x memory reduction

200 +

150 -

100 -

u
o
1

Attention forward + backward speed (A100 80GB SXM4)

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

512

FlashAttention Memory Reduction

189 20 1 B Dropout + Masking

182

15 A

10 A

Memory Reduction (X times less)

128 256 512 1024 2048 4096
1k 2k 4k 8k 16k Sequence Length
Sequence length

Memory linear in sequence length

Attention optimizations

 LLM Training
 FlashAttention

 LLM Inference
* Recursive Attention
* Flash Decoding
« PagedAttention

Generalizing attention score and value vector

[13 - b} 1
Pre-softmax “attention score ssﬁqk?

Define the following “attention weight” for an index set I

s(1) = log() exp(s)

i€l
Generalize the value vector v for index set I

Zi (i) [
v(l) = Mgy softmax(s);v; = E;;’(‘EUS))”

When index set I = {i}, s{i}) = s;, v{{i}) =,
When index set I = {1,2, ...t} , v(I) is the final output of the attention

Reference: flashinfer.ai

Recursive attention

s(I) = log (Z eXP(&')):”U) = Z softmax(s);v; = Zi;:((s((;iivi

L€l L€l

For any partition {/;} of I such that 1 =U]7-”L=1 Ij, the following relation holds

S(U}Ll Ij) = logz exp (S(Ij)) , v(U}Ll Ij) = z softmax([s(1,),s(1,), ...])jv(lj)
J J

Attention computation is communicative and associative, can be done by divide-and-conquer.

Thisis an important property for a lot of system optimization:
We can recursively combine the vector and “attention score” of any subsets of indices.

Attention optimizations

 LLM Training
 FlashAttention

 LLM Inference
* Recursive Attention
* Flash Decoding
« PagedAttention

Generative LLM inference: autoregressive decoding

Input Prompt: [Accelerating LLM requires machine] > learning > systems E-»optimizations
lter0 : lter1 i lter2 i lter3
T R S S B
Layer 1 Layer 1 Layer 1 Layer 1
S R J R SR R
Layer 2 Layer 2 Layer 2 Layer 2
T S S R S B
Layer 3 Layer 3 Layer 3 Layer 3
Voo ! ’ v

Outputs: learning . systems - optlmlzat|ons [EOS]

LLII-LL

Generative LLM inference: autoregressive decoding

Attention Score

Acc. | 1
LLM| 2|0
requires| 5| 1|3
machine|2 10|11
§= ¢ £
< 40 5 £
S 3
- £

Pre-filling Phase

Generative LLM inference: autoregressive decoding

Attention Score

learning

Acc. |
LLM|o
requires |~
machine | -~
learning | ™

Decoding Phase

Generative LLM inference: autoregressive decoding

(O-th iteration):
* Process all input tokens at once

(all other iterations):
* Process a single token generated from previous iteration
« Use attention keys & values of all previous tokens

« Key-value cache:

« Save attention keys and values for the following iterations to avoid
recomputation

Apply FlashAttention to LLM inference

Attention Comp. Attention Comp

Ace. learning
M = 92 o
requires g - 5= %
machine S & ®
- £ 9
g= g 2
<335 E
Sh
Pre-filling phase: Decoding phase:
* Yes, compute different queries * No, there is a single query in the

using different thread blocks/warps decoding phase

FlashAttention processes K/V sequentially

Values

Keys

Queries .

Output

(animation) https://pytorch.org/assets/images/Inference_regular_attn.gif

Inefficient for requests with long context (many keys/values)

https://jacksoncakes.com/img/in-post/post-flash-attn/flash-attn-viz.mp4
https://pytorch.org/assets/images/Inference_regular_attn.gif

Flash-decoding parallelizes across keys/values

1. Split keys/values into small chunks
2. Compute attention with these splits using FlashAttention
3. Reduce overall all splits

Values

Keys

Queries !

Output

Split 1/5 Split 2/5 Split 3/5 Split 4/5 Split 5/5

(animation) https://pytorch.org/assets/images/inference_splitkv.gif

Key insight: attention is associative and commutative (recall Recursive Attention)

https://jacksoncakes.com/img/in-post/post-flash-attn/flash-attn-viz.mp4
https://pytorch.org/assets/images/inference_splitkv.gif

Flash-decoding is up to 8x faster than prior work

50

30 A

tok/s

20

10 ~

Codellama-34b end-to-end decoding speed [bs=1, MP=4]

pytorch primitives
flash-attention

FT attention
flash-decoding

10° 104
Prompt length

Attention optimizations

 LLM Training
 FlashAttention

 LLM Inference
* Recursive Attention
* Flash Decoding
« PagedAttention

KV cache dynamically grows and shrinks

[Accelerating LLM requires machine]

. . Iter O
Attention Matrix !
Layer 1
Acc. .
LLM ’
requires Layer 2
machine !
g2 o 2 Layer 3
< 15 <
o 8 '
e g
Outputs: learning
2
= O
— =
KV Cache o =
[5) o
&) o
O -
<

KV cache dynamically grows and shrinks

[Accelerating LLM requires machine]

Attention Matrix

learning

Acc

LLM
requires
machine

KV Cache

learning

Iter O
‘

Layer 1

:

Layer 2

|

Layer 3

v

Outputs: learning

requires
machine

(®))
g
-—

©

| -
°

)

Q

o
<

:> learning

Iter 1
i

Layer 1

!

Layer 2

b

Layer 3
4

systems

[

learning

KV cache dynamically grows and shrinks

[Accelerating LLM requires machine] :» learning > systems
lter0 | fter1 i lter2
Vb }
Attention Matrix Layer1 i Layer1 { Layer1
R S
E— L 2 : L 2 E L 2
ayer2 : Layer : ayer
= g22t i B R
<3I5c£EQ Vool : !
o @ @ : :
o I > : :
e 9 5 Layer3 : Layer3 : Layer3
A

Outputs: learning 4 systems -+optimizations

LLII-L

KV Cache

requires
machine
learning
systems

(@)
=
-+

©

| -
Q

)

Q

&
<

KV cache dynamically grows and shrinks

[Accelerating LLM requires machine]

Attention Matrix

optimizations

Acc

LLM
requires
machine
learning
systems

KV Cache

opt.

Outputs:

(@)
S
——

©

—
Q°

)

Q

O
<

> learning
lter0 : lter1
VSR S
Layer 1 Layer 1
Lo
Layer 2 Layer 2
Voo
Layer 3 Layer 3
Voo 4
learning i systems

F S

requires
machine
learning
systems

optimizations

;> Systems

lter 2
}

Layer 1

|

Layer 2

!

Layer 3

|

(:aptimizrsltions,-i

¥

:»>optimizations

Iter 3
v

Layer 1

'

Layer 2

!

Layer 3

|
[EOS]

M.

Static KV cache management wastes memory

0 3
Artificial|lntellige| is
nce

As max length
<resv> <resv> ... <resv> <resv> Alan | Turing

e ' V" '
3 KV Cache slots for Pre-allocated slots for As output External frag. Request B
request As prompt (Internal frag.)

* Pre-allocates contiguous space of memory to the request’s maximum
length

« Memory fragmentation
 Internal fragmentation due to unknown output length
« External fragmentation due to non-uniform per-request max lengths

Slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention

Significant memory waste in KV cache

« Only 20-40% of KV cache is utilized to store actual token states

M KV Cache " Internal frag. M External frag. & Others
100 -

80 A

60 -

40 -

20 A

KV Cache space usage (%)

Orca Orca Orca

(Max) (Pow2) (Oracle) viim

PagedAttention

« Application-level memory paging and virtualization for KV cache

Memory managemen

Page O

Process Page 1
A Page 2
Page 3

Page 4

Physical Memory

tin OS

Process
B

PagedAttention

Request
A

KV Block O

KV Block 1

KV Block 2

KV Block 3

KV Block 4

KV Cache

Request
B

Paging KV cache space into KV blocks™

« KV block is a fixed-size contiguous
chunk of memory that stores KV
states from left to right

* overloaded in PagedAttention

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

KV blocks

KV Cache

Artificia®T™elligen i the

v
Block size = 4

Attention with virtualized KV cache

Physical KV blocks

Request block 0
A
computer | scientist
block 1
Prompt: “Alan Turing is a computer scientist”
block 2
LOgicaI KV blocks Block table block 3
Alan Turing is a Physical | # Filled
block 0 \ block number block 4
computer | scientist 7 4
block 1 ~ 1 5 block 5
block 2 ~ B block 6
_ _ Alan Turin is
block 3 block 7 ?

Attention with virtualized KV cache

1. Fetch non-contiguous KV blocks using the block table
2. Apply attention on the fly

KV Cache
Block 1 |computer| scientist | and mathe-
matician
Block table
Physical]
block number # Filked
5 4 Block 2 |renowned for
Query for > 0 4
2 2
Block 0 | Alan Turing is a

Key insight: attention is associative and commutative

Memory management with PagedAttention

Physical KV blocks

Request block 0
A
computer | scientist
block 1
Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
Alan Turing is a Physical | # Filled
block 0 \ block number block 4
computer | scientist 7 4
block 1 S~ 1 > block 5
block 2 ~ B block 6
block 3 block 7 Alan Turing is

Memory management with PagedAttention

Physical KV blocks

Request block 0
A
computer | scientist
block 1
Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
Alan Turing is a Physical | # Filled
block 0 \ block number block 4
computer | scientist | and 7 4
block 1 S~ 1 > block 5
block 2 ~ B block 6
block 3 block 7 Alan Turing is

Memory management with PagedAttention

Physical KV blocks

Request block 0
A

computer | scientist | and

block 1

Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
Alan Turing is a Physical | # Filled
block 0 \ block number block 4
computer | scientist | and 7 4

block 1 S~ 1 3 block 5

block 2 ~ B block 6
block 3 block 7 Alan Turing is

Memory management with PagedAttention

block O

block 1

block 2

block 3

Request

A

Prompt: “Alan Turing is a computer scientist”
Completion: “and_mathematician”

Logical KV blocks Block table
Alan Turing is a Physical # Filled
\ block number
computer | scientist | and |mathem 7 4
atician | ™~ 1 3

block O

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Physical KV blocks

computer | scientist| and |mathem
atician
Alan Turing is a

Memory management with PagedAttention

block O

block 1

block 2

block 3

Request

A

Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician renowned”

Logical KV blocks Block table
Alan Turing is a Physical # Filled
\ block number
computer | scientist and |mathema 7 4
tician |~ 1 4
renowned 5 1

Physical KV blocks

block O
block 1 | computer | scientist| and rgzg;srr]n
block 2
block 3
~ Allocated on demand
block 4
[block 5 [renowned
block 6
block 7| Alan Turing is a

Memory efficiency of PagedAttention

. . . . Alan Turing is a
Minimal internal fragmentation _ ,
computer scientist and mathematl
« Only happens at the last block of a sequence e
« # wasted tokens / seq < block size) A ~
nterna
No external fragmentation fragmentation

M KV Cache " Internal frag. M External frag. & Others
100 A

80 A

60 -

40 1

20 1

KV Cache space usage (%)

Orca Orca Orca
(Max) (Pow?2) (Oracle) viim

Summarize: techniques for optimizing attention

Recursive Attention: incremental / divide-and-conguer compute

FlashAttention: tiling to reduce GPU global memory access

Auto-regressive Decoding: pre-filling and decoding phases, KV cache

FlashDecoding: improving attention’s parallelism by splitting keys/values

PagedAttention: paging and virtualization to reduce KV cache’s memory
requirement

Recess next week

* No lecture

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) Transformers, Attention and Optimizations
	Slide 2: Sequence prediction
	Slide 3: Method 1: direct / spot prediction
	Slide 4: Method 2: Recurrent Neural Networks
	Slide 5: “Attention” mechanism
	Slide 6: Transformer block and self attention
	Slide 7: Transformer block and self attention
	Slide 8: Self-attention operation
	Slide 9: Self-attention operation
	Slide 10: Multi-head attention
	Slide 11: How to get Q K V?
	Slide 12: Masked self-attention
	Slide 13: Attention: O = Softmax(QKT) V
	Slide 14: Attention optimizations
	Slide 15: Revisit: GPU memory hierarchy
	Slide 16: FlashAttention
	Slide 17: Tiling: decompose large softmax into smaller ones by scaling
	Slide 18: Tiling
	Slide 19: Recomputation: backward pass
	Slide 20: FlashAttention v2: threadblock-level parallelism
	Slide 21: FlashAttention v2: threadblock-level parallelism
	Slide 22: FlashAttention v2: threadblock-level parallelism
	Slide 23: FlashAttention v2: warp-level parallelism
	Slide 24
	Slide 25: Attention optimizations
	Slide 26: Generalizing attention score and value vector
	Slide 27: Recursive attention
	Slide 28: Attention optimizations
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Generative LLM inference: autoregressive decoding
	Slide 33: Apply FlashAttention to LLM inference
	Slide 34: FlashAttention processes K/V sequentially
	Slide 35: Flash-decoding parallelizes across keys/values
	Slide 36: Flash-decoding is up to 8x faster than prior work
	Slide 37: Attention optimizations
	Slide 38: KV cache dynamically grows and shrinks
	Slide 39: KV cache dynamically grows and shrinks
	Slide 40: KV cache dynamically grows and shrinks
	Slide 41: KV cache dynamically grows and shrinks
	Slide 42: Static KV cache management wastes memory
	Slide 43: Significant memory waste in KV cache
	Slide 44: PagedAttention
	Slide 45: Paging KV cache space into KV blocks*
	Slide 46: Attention with virtualized KV cache
	Slide 47: Attention with virtualized KV cache
	Slide 48: Memory management with PagedAttention
	Slide 49: Memory management with PagedAttention
	Slide 50: Memory management with PagedAttention
	Slide 51: Memory management with PagedAttention
	Slide 52: Memory management with PagedAttention
	Slide 53: Memory efficiency of PagedAttention
	Slide 54: Summarize: techniques for optimizing attention
	Slide 55: Recess next week

