
CS6216 Advanced Topics in Machine Learning (Systems)

Serving LLMs

Yao LU
02 Oct 2024

National University of Singapore
School of Computing

From LLMs to serving systems

• From LLM inference to a full-fledged system
• Queueing, routing, batching,
• Pricing & accounting,
• Perf monitoring & optimization etc.

Chef

(LLM)

Restaurant

(serving systems)

Outline: LLMs serving techniques

• LLM decoding & system design

• Model quantization

• Continuous batching

• Speculative decoding

• Overall goals:

• Improve latency, throughput, memory consumption, generalizability, ..

Recall: LLM incremental decoding

Main issues:

• Limited degree of parallelism → underutilized GPU resources

• Need all parameters to decode a token → bottlenecked by GPU memory access

[Accelerating LLM requires machine] learning systems optimization

learning systems optimization [EOS]

Iterations: 0 1 2 3

Outputs:

Transformer Layer 1

Transformer Layer 96

LLM ……

Tokenizer

• Normalization: cleaning up

• Pre-tokenization: splitting

• Modeling: mapping (sub)tokens

• Postprocessor: adding special tokens

Modeling: Byte Pair Encoding (BPE)

• Key idea:
• Common words are represented in the vocabulary as a single token
• Rare words are broken down into two or more subword tokens

• Example:
aaabdaaabac Z=aa
→ ZabdZabac Y=ab
→ ZYdZYac X=ZY
→ XdXac

• Algorithm:
 Recursively find the most frequent (byte pair) and merge them

https://towardsdatascience.com/byte-pair-encoding-subword-based-tokenization-algorithm-77828a70bee0

Input corpus:
{“old</w>”: 7, “older</w>”: 3, “finest</w>”: 9, “lowest</w>”: 4}

</w> is word boundary

Steps:

• List and find the most frequent (byte) pair

• Merge and create a new token

• Update the frequency counts in dictionary

Stopping criteria:

• Word level: reaching </w>

• Overall: reaching token count

Modeling: Byte Pair Encoding (BPE)

Input corpus:
{“old</w>”: 7, “older</w>”: 3, “finest</w>”: 9, “lowest</w>”: 4}

</w> is word boundary

Steps:

• List and find the most frequent (byte) pair

• Merge and create a new token

• Update the frequency counts in dictionary

Stopping criteria:

• Word level: reaching </w>

• Overall: reaching token count

Modeling: Byte Pair Encoding (BPE) Most frequent: es

Input corpus:
{“old</w>”: 7, “older</w>”: 3, “finest</w>”: 9, “lowest</w>”: 4}

</w> is word boundary

Steps:

• List and find the most frequent (byte) pair

• Merge and create a new token

• Update the frequency counts in dictionary

Stopping criteria:

• Word level: reaching </w>

• Overall: reaching token count

Modeling: Byte Pair Encoding (BPE) Most frequent: est

Input corpus:
{“old</w>”: 7, “older</w>”: 3, “finest</w>”: 9, “lowest</w>”: 4}

</w> is word boundary

Steps:

• List and find the most frequent (byte) pair

• Merge and create a new token

• Update the frequency counts in dictionary

Stopping criteria:

• Word level: reaching </w>

• Overall: reaching token count

Modeling: Byte Pair Encoding (BPE) Most frequent: est</w>

Input corpus:
{“old</w>”: 7, “older</w>”: 3, “finest</w>”: 9, “lowest</w>”: 4}

</w> is word boundary

Steps:

• List and find the most frequent (byte) pair

• Merge and create a new token

• Update the frequency counts in dictionary

Stopping criteria:

• Word level: reaching </w>

• Overall: reaching token count

Modeling: Byte Pair Encoding (BPE) Most frequent: ol

Input corpus:
{“old</w>”: 7, “older</w>”: 3, “finest</w>”: 9, “lowest</w>”: 4}

</w> is word boundary

Steps:

• List and find the most frequent (byte) pair

• Merge and create a new token

• Update the frequency counts in dictionary

Stopping criteria:

• Word level: reaching </w>

• Overall: reaching token count

Modeling: Byte Pair Encoding (BPE) Most frequent: old

Input corpus:
{“old</w>”: 7, “older</w>”: 3, “finest</w>”: 9, “lowest</w>”: 4}

</w> is word boundary

Encoding and decoding:
Decoding: straightforward

[“the</w>”, “high”, “est</w>”, “range</w>”, “in</w>”, “Seattle</w>”]

→ the highest range in Seattle.

Encoding:

• Iteratively replace tokens from longest to shortest

• Replace leftovers with OOV token

Modeling: Byte Pair Encoding (BPE) Cleanup dictionary

LLM decoding

• LLM decoding is like a pottery wheel

• Greedy decoding: always pick the highest prob

• Sampling-based decoding: use top-k, p, temperature to “shape”
the pottery

• Beam search: maximize overall prob in a search window

LLM decoding: sampling-based methods

• Top-K limits each generation within the top K choices
• Top-P filters choices (keep those at least probability P)

• Temperature adjusts the probability
 scores: log_prob_scaled = log_prob / temperature

• Application order:
 Temperature → top-K → top-P

LLM decoding: sampling-based methods

• Top-K complexity: O(k log n)
• n could be tens of thousands or more
• Similar for softmax

• Techniques to accelerate top-k or softmax
• Staged, parallel top-k on GPUs
• Advanced sampling algorithms

• Gumbel-max sampling
• Hierarchical softmax
• Importance sampling

Constrained decoding

• Sampling-based decoding does not consider semantics

• Constrained decoding can use
• Grammar
• Regex
• Choices
• Data type, length

• Different implementations: Finite State Machine (FSM), masking, etc.

KV cache management

• KV cache requirement in ~1MB/token
• 2 ⋅ 𝑏 ⋅ 𝑡 ⋅ 𝑛𝑙𝑎𝑦𝑒𝑟𝑠 ⋅ 𝑛ℎ𝑒𝑎𝑑𝑠 ⋅ 𝑑ℎ𝑒𝑎𝑑 ⋅ 𝑝𝑎

• Strategies include
• Novel attention architectures
• Efficient memory management
• Cache compression
• Evict to CPU/disk

(FastGen) Example of set of compression policies: Special tokens
(green) + Punctuation tokens (orange) + Local attention (blue).
Discarded tokens are colored in gray.

Stopping criteria in LLM generation

• Stopping word: a special token <EOS>, <s> etc.

• Stopping string: a sequence of tokens

• Max token count: # of tokens generated so far

Serving system architecture

Key ideas:

• Each model = 1 container pod

• User server model shard

• Pytorch & Huggingface ecosystem

• Model shard in Python, server in Rust

Restful API gRPC

1:1 1:n

Outline: LLMs serving techniques

• LLM decoding & system design

• Model quantization

• Continuous batching

• Speculative decoding

Model quantization

• DNNs originally use FP32 precision
• Continuous values → FP32 quantization
• In comparison, images use 3 x [0,256] pixels

• Convert models to lower precisions

➢ Reduce memory usages & deploy on low-resource devices

➢ Improve training & inference speed

➢ Extreme cases: use bitwise operators

➢ (But) At the tradeoff of accuracy lost

Rounding: find the nearest integer
1.8 → 2, 1.2 → 1

Truncating: remove the decimal part
1.8 → 1, 1.2 → 1

Floating point representations

FP32

FP16

BF16,

B=Google brain

1 bits
Sign 8 bits

Exponent
23 bits

Mantissa

…

1 bits
Sign 5 bits

Exponent
10 bits

Mantissa

…

1 bits
Sign 8 bits

Exponent
7 bits

Mantissa

…

• Examples:
Original value 0.0001
FP16: 0.00010001659393 (Binary: 0|00001|1010001110, Hex: 068E)
BF16: 0.00010013580322 (Binary: 0|01110001|1010010, Hex: 38D2)

Original value 1e-08
FP16: 0.00000000000000 (Binary: 0|00000|0000000000, Hex: 0000)
BF16: 0.00000001001172 (Binary: 0|01100100|0101100, Hex: 322C)

Original value 100000.00001
FP16: inf (Binary: 0|11111|0000000000, Hex: 7C00)
BF16: 99840.0000000000000 (Binary: 0|10001111|1000011, Hex: 47C3)

BF16 provides a wider range at a cost of some precision → balance between range & numerical stability

Quantization

𝑄 = 𝑟𝑜𝑢𝑛𝑑
𝑟

𝑠

-0.5 1.5

-128

𝑄 = 𝑟𝑜𝑢𝑛𝑑
𝑟

𝑠
+Z

• Uniform, symmetric inputs

• Non-uniform, asymmetric inputs

Dequantization ǁ𝑟 = 𝑆 𝑄 + 𝑍 ,
Perplexity, error 𝜖 = ǁ𝑟 − r

Calibration: choosing scale and zero factor

https://medium.com/@AIBites/model-quantization-in-deep-neural-networks-81df49f3c7d8

Calibration: choosing scale and zero factor

Calibration: rectifying skews

Calibration: rectifying skews

When & How to calibrate?

During or after training?

Data skew is unknown a priori

Quantization modes

• Post Training Quantization (PTQ)

➢Weight-only quantization:

 Inflate model weights during computation

 May not need calibration dataset

➢Full quantization:

 Weights + activation, need calibration dataset

 Calibrations include:

o Output bias caused by quantization, add up to the final output

o Weights, based on mean and variance before/after quantization

Pre-Trained
Model

Calibration
Data

Calibration

Quantization Quantized Model

Quantization modes

• Post Training Quantization (PTQ)

• Quantization Aware Training (QAT)
• Quantization Aware Fine-Tuning (QAF)

• Challenge: quantization is not differentiable.
• Solution:
 Insert fake quantization operators in the graph to compute statistics of the inputs
 Once the model is trained, update weights and remove the fake operators

Trained Model

Training data Quantization

Re-training / Fine-tuning

Quantized Model

Quantization targets

a) Weights (W): reduce model sizes and memory footprint

b) Activation (X): reduce memory footprint and improve speed

c) KV cache: improve throughput

d) Gradients: training only – reduce networking costs

Weight-only quantization: LLM.int8()

• Decompose the matrix
• Use 8bit quantization for the majority, 16bit for outliers

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. 2022

Weight-only quantization: GPTQ

• Need calibration data

• Recursive process to
• Quantize a block
• Update the remaining weights to

recover accuracy lost

GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained Transformers. 2022

Weight-only quantization: AWQ

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration. 2023

• Keep salient weights (by observing the activation distribution) in FP16
can greatly reduce quantization error

• Use per-channel scaling

(Round To Nearest)

Full quantization: SmoothQuant

• Activations are harder to quantize

• Propose to smooth activations by
transformation on the weights

• Use per-token and per-channel
quantization

Accurate and Efficient Post-Training Quantization for Large Language Models. 2022

Quantization granularity

a) Per-tensor: whole layer of input matrices

b) Per-token & per-channel: slices of input

matrices

c) Per-group: combination of above

(b), (c) result in mixed-precision

quantization schemes.

3
7

Outline: LLMs serving techniques

• LLM decoding & system design

• Model quantization

• Continuous batching

• Speculative decoding

LLM decoding timeline

Batching requests to improve GPU utilization

Issues with static batching:

• Requests may complete at different iterations

• Idle GPU cycles

• New requests cannot start immediately

Continuous batching

• Higher GPU utilization

• New requests can start immediately

Orca:A Distributed Serving System for Transformer-Based Generative Models. OSDI’22

Continuous batching step-by-step

• Receives two new requests R1 and R2

R1: optimizing ML
systems

R2: LLM serving is

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

Continuous batching step-by-step

• Iteration 1: decode R1 and R2

Maximum serving batch
size = 3

R1: optimizing ML
systems

R2: LLM serving is

Iteration 1

Request Pool

(CPU)

Execution Engine

(GPU)

Continuous batching step-by-step

• Receive a new request R3; finish decoding R1 and R2

Maximum serving batch
size = 3

R1: optimizing ML
systems requires

R2: LLM serving is
critical.

Iteration 1

Request Pool

(CPU)

Execution Engine

(GPU)

R3: A man

Continuous batching step-by-step

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch
size = 3

R3: A man is

R1: optimizing ML
systems requires ML

R2: LLM serving is
critical. <EOS>

Iteration 2

Request Pool

(CPU)

Execution Engine

(GPU)

R4: A dog is

R5: How are

Continuous batching step-by-step

• Iteration 3: decode R1, R3, R4

Iteration 3

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

R3: A man is

R1: optimizing ML
systems requires ML

R4: A dog is

R5: How are

Outline: LLMs serving techniques

• LLM decoding & system design

• Model quantization

• Continuous batching

• Speculative decoding

Recall: LLM decoding is bottlenecked on memory bandwith

• Limited degree of parallelism → underutilized GPU resources

• Need all parameters to decode a token → bottlenecked by GPU memory access

[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]

Iterations: 0 1 2 3

Outputs:

Transformer Layer 1

Transformer Layer 96

LLM ……

Compute
Resources*

Memory
Bandwidth*

76%

2%

* Measured by serving LLAMA-2-70B on 4 A100 GPUs with 4K sequence length

Tradeoffs between language models

Large models

Pro: better generative performance

Con: slow and expensive to serve

Small models

Pro: cheap and fast

Con: less accurate

Parameters 175B 13B 2.7B 760M 125M

TriviaQA 71.2 57.5 42.3 26.5 6.96

PIQA 82.3 79.9 75.4 72.0 64.3

SQuAD 64.9 62.6 50.0 39.2 27.5

latency 20 s 7.6s 2.7s 1.1s 0.3s

A100s 10 1 1 1 1

* Language Models are Few-Shot Learners.Arxiv. 2005.14165

Comparing multiple GPT-3 models*

Speculative decoding

1. Use a small speculative model (SSM) to predict the LLM’s output

• SSM runs much faster than LLM

2. Use the LLM to verify the SSM’s prediction

[Accelerating LLM
requires machine] learning systems

learning systems design

0 1 2

Small Speculative

Model
Large Language Model

LLM is novel learning systems optimization principles

Verification

[Accelerate LLM requires machine] learning systems design

Speculation

Verifying speculative decoding results

Large Language Model

[Accelerate LLM requires machine] learning systems design SSM Predictions

Generate 3 new tokens in one LLM decoding step

LLM Outputs:

Input Prompt

Verifying speculative decoding results

Large Language Model

[Accelerate LLM requires machine] learning systems design SSM Predictions

Generate 3 new tokens in one LLM decoding step

LLM Outputs:

Input Prompt

Quiz:
how?

Verifying speculative decoding results

Verifying speculative decoding results

Key takeaway:

• LLM inference is bottlenecked by accessing model weights

• Using LLM to decode multiple tokens to improve GPU utilization

• Tradeoff between latency and throughput

Large Language Model

[Accelerate LLM requires machine] learning systems design

LLM Outputs:

SSM PredictionsInput Prompt

(credits from https://github.com/FasterDecoding/Medusa)

Without speculative decoding With speculative decoding

Summary: LLMs serving techniques

• LLM decoding & system design

• Model quantization

• Continuous batching

• Speculative decoding

• What’s uncovered

• Server design & implementation

• New hardware

• Compilers

• Cloud systems

• Applications

Chef

(LLM)

Restaurant

(serving systems)

Disney world

(cloud systems)

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) Serving LLMs
	Slide 2: From LLMs to serving systems
	Slide 3: Outline: LLMs serving techniques
	Slide 4: Recall: LLM incremental decoding
	Slide 5: Tokenizer
	Slide 6: Modeling: Byte Pair Encoding (BPE)
	Slide 7:
	Slide 8:
	Slide 9:
	Slide 10:
	Slide 11:
	Slide 12:
	Slide 13:
	Slide 14: LLM decoding
	Slide 15: LLM decoding: sampling-based methods
	Slide 16: LLM decoding: sampling-based methods
	Slide 17: Constrained decoding
	Slide 18: KV cache management
	Slide 19: Stopping criteria in LLM generation
	Slide 20: Serving system architecture
	Slide 21: Outline: LLMs serving techniques
	Slide 22: Model quantization
	Slide 23: Floating point representations
	Slide 24: Quantization
	Slide 25: Calibration: choosing scale and zero factor
	Slide 26: Calibration: choosing scale and zero factor
	Slide 27: Calibration: rectifying skews
	Slide 28: Calibration: rectifying skews
	Slide 29: Quantization modes
	Slide 30: Quantization modes
	Slide 31: Quantization targets
	Slide 32: Weight-only quantization: LLM.int8()
	Slide 33: Weight-only quantization: GPTQ
	Slide 34: Weight-only quantization: AWQ
	Slide 35: Full quantization: SmoothQuant
	Slide 36: Quantization granularity
	Slide 37: Outline: LLMs serving techniques
	Slide 38: LLM decoding timeline
	Slide 39: Batching requests to improve GPU utilization
	Slide 40: Continuous batching
	Slide 41: Continuous batching step-by-step
	Slide 42: Continuous batching step-by-step
	Slide 43: Continuous batching step-by-step
	Slide 44: Continuous batching step-by-step
	Slide 45: Continuous batching step-by-step
	Slide 46: Outline: LLMs serving techniques
	Slide 47: Recall: LLM decoding is bottlenecked on memory bandwith
	Slide 48: Tradeoffs between language models
	Slide 49: Speculative decoding
	Slide 50: Verifying speculative decoding results
	Slide 51: Verifying speculative decoding results
	Slide 52: Verifying speculative decoding results
	Slide 53: Verifying speculative decoding results
	Slide 54
	Slide 55: Summary: LLMs serving techniques

