CS6216 Advanced Topics in Machine Learning (Systems)

Serving LLMs

Yao LU 02 Oct 2024

National University of Singapore School of Computing

From LLMs to serving systems

Chef (LLM)

Restaurant (serving systems)

- From LLM inference to a full-fledged system
 - Queueing, routing, batching,
 - Pricing & accounting,
 - Perf monitoring & optimization etc.

Outline: LLMs serving techniques

- LLM decoding & system design
- Model quantization
- Continuous batching
- Speculative decoding
- Overall goals:
 - Improve latency, throughput, memory consumption, generalizability, ...

Recall: LLM incremental decoding

Main issues:

- Limited degree of parallelism \rightarrow underutilized GPU resources
- Need all parameters to decode a token \rightarrow bottlenecked by GPU memory access

Tokenizer

- Normalization: cleaning up
- Pre-tokenization: splitting
- Modeling: mapping (sub)tokens
- Postprocessor: adding special tokens

• Key idea:

- Common words are represented in the vocabulary as a single token
- Rare words are broken down into two or more subword tokens

• Example:

aaabdaaabac	Z=aa
→ ZabdZabac	Y=ab
→ ZYdZYac	X=ZY
→ XdXac	

• Algorithm:

Recursively find the most frequent (byte pair) and merge them

Input corpus:

{"old</w>": 7, "older</w>": 3, "finest</w>": 9, "lowest</w>": 4}

</w> is word boundary

Steps:

- List and find the most frequent (byte) pair
- Merge and create a new token
- Update the frequency counts in dictionary

- Word level: reaching </w>
- Overall: reaching token count

Number	Token	Frequency	
1		23	
2	0	14	
3	I	14	
4	d	10	
5	е	16	
6	r	3	
7	f	9	
8	i	9	
9	n	9	
10	S	13	
11	t	13	
12	w	4	

Most frequent: es

Input corpus:

{"old</w>": 7, "older</w>": 3, "finest</w>": 9, "lowest</w>": 4} </w> is word boundary

Steps:

- List and find the most frequent (byte) pair
- Merge and create a new token
- Update the frequency counts in dictionary

- Word level: reaching </w>
- Overall: reaching token count

Number	Token	Frequency
1		23
2	0	14
3	I	14
4	d	10
5	5 e 16 - 13 = 3	
6	r	3
7	f	9
8	i	9
9	n	9
10	S	13 - 13 = 0
11	t	13
12	w	4
13	es	9 + 4 = 13

Most frequent: est

Input corpus:

{"old</w>": 7, "older</w>": 3, "finest</w>": 9, "lowest</w>": 4} </w> is word boundary

Steps:

- List and find the most frequent (byte) pair
- Merge and create a new token
- Update the frequency counts in dictionary

- Word level: reaching </w>
- Overall: reaching token count

Number	er Token Frequency		
1	23		
2	0	14	
3	I	14	
4	d	10	
5	е	16 - 13 = 3	
6	r	3	
7	f	9	
8	i	9	
9	n	9	
10	S	13 - 13 = 0	
11	t	13 - 13 = 0	
12	w 4		
13	es 9 + 4 = 13 - 13 =		
14	est	13	

Most frequent: est</w>

Input corpus:

{"old</w>": 7, "older</w>": 3, "finest</w>": 9, "lowest</w>": 4} </w> is word boundary

Steps:

- List and find the most frequent (byte) pair
- Merge and create a new token
- Update the frequency counts in dictionary

- Word level: reaching </w>
- Overall: reaching token count

Number	Number Token Fre		
1		23 - 13 = 10	
2	0	14	
3	I	14	
4	d	10	
5	е	16 - 13 = 3	
6	r	3	
7	f	9	
8	i	9	
9	n	9	
10	S	13 - 13 = 0	
11	t	13 - 13 = 0	
12	w	4	
13	es 9 + 4 = 13 - 13 = (
14	est	13 - 13 = 0	
15	est	13	

Most frequent: ol

Input corpus:

{"old</w>": 7, "older</w>": 3, "finest</w>": 9, "lowest</w>": 4} </w> is word boundary

Steps:

- List and find the most frequent (byte) pair
- Merge and create a new token
- Update the frequency counts in dictionary

- Word level: reaching </w>
- Overall: reaching token count

Number	Token	Frequency
1		23
2	0	14 - 10 = 4
3	I	14 - 10 = 4
4	d	10
5	е	16 - 13 = 3
6	r	3
7	f	9
8	i	9
9	n	9
10	S	13 - 13 = 0
11	t	13 - 13 = 0
12	W	4
13	es	9 + 4 = 13 - 13 = 0
14	est	13
15	ol	7 + 3 = 10
8 9 10 11 12 13 14 15	i n s t w es est ol	9 9 $13 - 13 = 0$ $13 - 13 = 0$ 4 $9 + 4 = 13 - 13 = 0$ 13 $7 + 3 = 10$

Most frequent: old

Input corpus:

{"old</w>": 7, "older</w>": 3, "finest</w>": 9, "lowest</w>": 4}

</w> is word boundary

Steps:

- List and find the most frequent (byte) pair
- Merge and create a new token
- Update the frequency counts in dictionary

- Word level: reaching </w>
- Overall: reaching token count

Number	Token	Frequency	
1		23 - 13 = 10	
2	0	14 - 10 = 4	
3	I	14 - 10 = 4	
4	d	10 - 10 = 0	
5	е	16 - 13 = 3	
6	r	3	
7	f	9	
8	i	9	
9	n	9	
10	S	13 - 13 = 0	
11	t	13 - 13 = 0	
12	w	4	
13	es	9 + 4 = 13 - 13 = 0	
14	est	13 - 13 = 0	
15	est	13	
16	ol	7 + 3 = 10 - 10 = 0	
17	old	7 + 3 = 10	

Cleanup dictionary

Input corpus:

{"old</w>": 7, "older</w>": 3, "finest</w>": 9, "lowest</w>": 4}

</w> is word boundary

Encoding and decoding:

Decoding: straightforward

["the</w>", "high", "est</w>", "range</w>", "in</w>", "Seattle</w>"

 \rightarrow the highest range in Seattle.

Encoding:

- Iteratively replace tokens from longest to shortest
- Replace leftovers with OOV token

	Number	Token	Frequency
	1		10
4)	2	0	4
4}	3	I	4
	4	е	3
	5	r	3
	6	f	9
	7	i	9
	8	n	9
e"]	9	w	4
	10	est	13
	11	old	10

LLM decoding

• LLM decoding is like a pottery wheel

mat: 0.6
couch: 0.2
bed: 0.1
chair: 0.05
car: 0.003
bike: 0.01
bucket: 0.3
.....

- Greedy decoding: always pick the highest prob
- Sampling-based decoding: use top-k, p, temperature to "shape" the pottery
- **Beam search:** maximize overall prob in a search window

LLM decoding: sampling-based methods

- Top-K limits each generation within the top K choices
- Top-P filters choices (keep those at least probability P)
- Temperature adjusts the probability SCOTES: log_prob_scaled = log_prob / temperature
- Application order:

Temperature \rightarrow top-K \rightarrow top-P

.....

LLM decoding: sampling-based methods

- Top-K complexity: O(k log n)
 - n could be tens of thousands or more
 - Similar for softmax
- Techniques to accelerate top-k or softmax
 - Staged, parallel top-k on GPUs
 - Advanced sampling algorithms
 - Gumbel-max sampling
 - Hierarchical softmax
 - Importance sampling

Constrained decoding

- Sampling-based decoding does not consider semantics
- Constrained decoding can use
 - Grammar
 - Regex
 - Choices
 - Data type, length
- Different implementations: Finite State Machine (FSM), masking, etc.

KV cache management

- KV cache requirement in ~1MB/token
 - $2 \cdot b \cdot t \cdot n_{layers} \cdot n_{heads} \cdot d_{head} \cdot p_a$
- Strategies include
 - Novel attention architectures
 - Efficient memory management
 - Cache compression
 - Evict to CPU/disk

(FastGen) Example of set of compression policies: Special tokens (green) + Punctuation tokens (orange) + Local attention (blue). Discarded tokens are colored in gray. Stopping criteria in LLM generation

- **Stopping word:** a special token <EOS>, <s> etc.
- **Stopping string:** a sequence of tokens
- Max token count: # of tokens generated so far

Serving system architecture

Text Generation Inference

Fast optimized inference for LLMs

Key ideas:

- Each model = 1 container pod Restful API gRPC
- User \leftrightarrow server \leftarrow model shard 1:n
- Pytorch & Huggingface ecosystem
- Model shard in Python, server in Rust

Outline: LLMs serving techniques

- LLM decoding & system design
- Model quantization
- Continuous batching
- Speculative decoding

Model quantization

- DNNs originally use FP32 precision
 - Continuous values \rightarrow FP32 quantization
 - In comparison, images use 3 x [0,256] pixels
- Convert models to lower precisions
 - Reduce memory usages & deploy on low-resource devices
 - Improve training & inference speed
 - Extreme cases: use bitwise operators
 - > (But) At the tradeoff of accuracy lost

Rounding: find the nearest integer $1.8 \rightarrow 2, 1.2 \rightarrow 1$

Truncating: remove the decimal part $1.8 \rightarrow 1, 1.2 \rightarrow 1$

Floating point representations

• Examples:

Original value 0.0001

FP16: 0.00010001659393 (Binary: 0|00001|1010001110, Hex: 068E) BF16: 0.00010013580322 (Binary: 0|01110001|1010010, Hex: 38D2)

Original value 1e-08

FP16: 0.000000000000 (Binary: 0|00000|000000000, Hex: 0000) BF16: 0.0000001001172 (Binary: 0|01100100|0101100, Hex: 322C)

Original value 100000.00001

FP16: inf (Binary: 0|11111|000000000, Hex: 7C00) BF16: 99840.000000000000 (Binary: 0|10001111|1000011, Hex: 47C3)

BF16 provides a wider range at a cost of some precision → balance between range & numerical stability

Quantization

Perplexity, error $\epsilon = \tilde{r} - r$

Calibration: choosing scale and zero factor

https://medium.com/@AIBites/model-quantization-in-deep-neural-networks-81df49f3c7d8

Calibration: choosing scale and zero factor

Calibration: rectifying skews

Calibration: rectifying skews

When & How to calibrate?

During or after training?

Data skew is unknown a priori

Quantization modes

- Post Training Quantization (PTQ)
 - > Weight-only quantization:

Inflate model weights during computation

May not need calibration dataset

- **Full quantization:**
 - Weights + activation, need calibration dataset

Calibrations include:

- Output bias caused by quantization, add up to the final output
- Weights, based on mean and variance before/after quantization

Quantization modes

• Post Training Quantization (PTQ)

- Quantization Aware Training (QAT)
- Quantization Aware Fine-Tuning (QAF)
 - Challenge: quantization is not differentiable.
 - Solution:

Insert fake quantization operators in the graph to compute statistics of the inputs Once the model is trained, update weights and remove the fake operators

Quantization targets

- a) Weights (W): reduce model sizes and memory footprint
- b) Activation (X): reduce memory footprint and improve speed
- c) KV cache: improve throughput
- d) Gradients: training only reduce networking costs

Weight-only quantization: LLM.int8()

- Decompose the matrix
- Use 8bit quantization for the majority, 16bit for outliers

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. 2022

Weight-only quantization: GPTQ

- Need calibration data
- Recursive process to
 - Quantize a block
 - Update the remaining weights to recover accuracy lost

Weight-only quantization: AWQ

(Round To Nearest)

- Keep salient weights (by observing the activation distribution) in FP16 can greatly reduce quantization error
- Use per-channel scaling

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration. 2023

Full quantization: SmoothQuant

- Activations are harder to quantize
- Propose to smooth activations by transformation on the weights
- Use per-token and per-channel quantization

Quantization granularity

- a) Per-tensor: whole layer of input matrices
- b) Per-token & per-channel: slices of input matrices
- c) Per-group: combination of above

(b), (c) result in mixed-precision quantization schemes.

Outline: LLMs serving techniques

- LLM decoding & system design
- Model quantization
- Continuous batching
- Speculative decoding

LLM decoding timeline

Batching requests to improve GPU utilization

Issues with static batching:

- Requests may complete at different iterations
- Idle GPU cycles
- New requests cannot start immediately

Continuous batching

- Higher GPU utilization
- New requests can start immediately

Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI'22

• Receives two new requests R1 and R2

Maximum serving batch size = 3

Execution Engine (GPU)

• Iteration 1: decode R1 and R2

(GPU)

• Receive a new request R3; finish decoding R1 and R2

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Iteration 2

• Iteration 3: decode R1, R3, R4

Outline: LLMs serving techniques

- LLM decoding & system design
- Model quantization
- Continuous batching
- Speculative decoding

Recall: LLM decoding is bottlenecked on memory bandwith

- Limited degree of parallelism \rightarrow underutilized GPU resources
- Need all parameters to decode a token → bottlenecked by GPU memory access

* Measured by serving LLAMA-2-70B on 4 A100 GPUs with 4K sequence length

Tradeoffs between language models

# Parameters	175B	13B	2.7B	760M	125M
TriviaQA	71.2	57.5	42.3	26.5	6.96
PIQA	82.3	79.9	75.4	72.0	64.3
SQuAD	64.9	62.6	50.0	39.2	27.5
latency	20 s	7.6s	2.7s	1.1s	0.3s
#A100s	10	1	1	1	1

Comparing multiple GPT-3 models*

Large models

Small models

Pro: better generative performance

Con: slow and expensive to serve

Pro: cheap and fast

* Language Models are Few-Shot Learners. Arxiv. 2005.14165

Speculative decoding

- 1. Use a small speculative model (SSM) to predict the LLM's output
 - SSM runs much faster than LLM
- 2. Use the LLM to verify the SSM's prediction

Key takeaway:

- LLM inference is bottlenecked by accessing model weights
- Using LLM to decode multiple tokens to improve GPU utilization
- Tradeoff between latency and throughput

USER: Hi, could you share a tale about a charming llama that grows Medusa-like h air and starts its own coffee shop? ASSISTANT:	USER: Hi, could you share a tale about a charming llama that grows Medusa-like h air and starts its own coffee shop? ASSISTANT:			

Without speculative decoding

With speculative decoding

Summary: LLMs serving techniques

- LLM decoding & system design
- Model quantization
- Continuous batching
- Speculative decoding
- What's uncovered
 - Server design & implementation
 - New hardware
 - Compilers
 - Cloud systems
 - Applications

Chef (LLM)

Restaurant (serving systems) Disney world (cloud systems)