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From LLMs to serving systems

• From LLM inference to a full-fledged system
• Queueing, routing, batching, 
• Pricing & accounting, 
• Perf monitoring & optimization etc.

Chef

(LLM)

Restaurant

(serving systems)



Outline: LLMs serving techniques

• LLM decoding & system design

• Model quantization

• Continuous batching

• Speculative decoding

• Overall goals: 

• Improve latency, throughput, memory consumption, generalizability, .. 



Recall: LLM incremental decoding

Main issues:

• Limited degree of parallelism → underutilized GPU resources

• Need all parameters to decode a token → bottlenecked by GPU memory access

[Accelerating LLM requires machine] learning systems optimization

learning systems optimization [EOS]

Iterations: 0 1 2 3

Outputs:

Transformer Layer 1

Transformer Layer 96

LLM ……



Tokenizer

• Normalization: cleaning up

• Pre-tokenization: splitting

• Modeling: mapping (sub)tokens

• Postprocessor: adding special tokens



Modeling: Byte Pair Encoding (BPE)

• Key idea: 
• Common words are represented in the vocabulary as a single token
• Rare words are broken down into two or more subword tokens

• Example:
aaabdaaabac  Z=aa
→ ZabdZabac  Y=ab
→ ZYdZYac  X=ZY
→ XdXac

• Algorithm: 
   Recursively find the most frequent (byte pair) and merge them

https://towardsdatascience.com/byte-pair-encoding-subword-based-tokenization-algorithm-77828a70bee0



Input corpus: 
{“old</w>”: 7, “older</w>”: 3, “finest</w>”: 9, “lowest</w>”: 4}

</w> is word boundary

Steps:

• List and find the most frequent (byte) pair

• Merge and create a new token

• Update the frequency counts in dictionary

Stopping criteria:

• Word level: reaching </w>

• Overall: reaching token count

Modeling: Byte Pair Encoding (BPE)
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Input corpus: 
{“old</w>”: 7, “older</w>”: 3, “finest</w>”: 9, “lowest</w>”: 4}

</w> is word boundary

Steps:

• List and find the most frequent (byte) pair
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• Word level: reaching </w>

• Overall: reaching token count

Modeling: Byte Pair Encoding (BPE) Most frequent: ol



Input corpus: 
{“old</w>”: 7, “older</w>”: 3, “finest</w>”: 9, “lowest</w>”: 4}

</w> is word boundary

Steps:

• List and find the most frequent (byte) pair

• Merge and create a new token

• Update the frequency counts in dictionary

Stopping criteria:

• Word level: reaching </w>

• Overall: reaching token count

Modeling: Byte Pair Encoding (BPE) Most frequent: old



Input corpus: 
{“old</w>”: 7, “older</w>”: 3, “finest</w>”: 9, “lowest</w>”: 4}

</w> is word boundary

Encoding and decoding:
Decoding: straightforward 

[“the</w>”, “high”, “est</w>”, “range</w>”, “in</w>”, “Seattle</w>”]

→ the highest range in Seattle. 

Encoding: 

• Iteratively replace tokens from longest to shortest

• Replace leftovers with OOV token

Modeling: Byte Pair Encoding (BPE) Cleanup dictionary



LLM decoding

• LLM decoding is like a pottery wheel

• Greedy decoding: always pick the highest prob

• Sampling-based decoding: use top-k, p, temperature to “shape” 
the pottery

• Beam search: maximize overall prob in a search window



LLM decoding: sampling-based methods

• Top-K limits each generation within the top K choices
• Top-P filters choices (keep those at least probability P)

• Temperature adjusts the probability 
   scores: log_prob_scaled = log_prob / temperature

• Application order: 
   Temperature → top-K → top-P 



LLM decoding: sampling-based methods

• Top-K complexity: O(k log n)
• n could be tens of thousands or more
• Similar for softmax

• Techniques to accelerate top-k or softmax
• Staged, parallel top-k on GPUs
• Advanced sampling algorithms

• Gumbel-max sampling
• Hierarchical softmax
• Importance sampling



Constrained decoding

• Sampling-based decoding does not consider semantics

• Constrained decoding can use
• Grammar
• Regex
• Choices
• Data type, length

• Different implementations: Finite State Machine (FSM), masking, etc. 



KV cache management

• KV cache requirement in ~1MB/token
• 2 ⋅ 𝑏 ⋅ 𝑡 ⋅ 𝑛𝑙𝑎𝑦𝑒𝑟𝑠 ⋅ 𝑛ℎ𝑒𝑎𝑑𝑠 ⋅ 𝑑ℎ𝑒𝑎𝑑 ⋅ 𝑝𝑎

• Strategies include
• Novel attention architectures
• Efficient memory management
• Cache compression
• Evict to CPU/disk

(FastGen) Example of set of compression policies: Special tokens 
(green) + Punctuation tokens (orange) + Local attention (blue). 
Discarded tokens are colored in gray.



Stopping criteria in LLM generation

• Stopping word: a special token <EOS>, <s> etc. 

• Stopping string: a sequence of tokens

• Max token count: # of tokens generated so far



Serving system architecture

Key ideas:

• Each model = 1 container pod

• User                server             model shard

• Pytorch & Huggingface ecosystem

• Model shard in Python, server in Rust

Restful API gRPC

1:1 1:n



Outline: LLMs serving techniques

• LLM decoding & system design

• Model quantization

• Continuous batching

• Speculative decoding



Model quantization

• DNNs originally use FP32 precision
• Continuous values → FP32 quantization
• In comparison, images use 3 x [0,256] pixels

• Convert models to lower precisions

➢ Reduce memory usages & deploy on low-resource devices

➢ Improve training & inference speed

➢ Extreme cases: use bitwise operators

➢ (But) At the tradeoff of accuracy lost

Rounding: find the nearest integer
1.8 → 2,   1.2 → 1

Truncating: remove the decimal part
1.8 → 1,   1.2 →  1



Floating point representations

FP32

FP16

BF16, 

B=Google brain

1 bits
Sign 8 bits

Exponent
23 bits

Mantissa

…

1 bits
Sign 5 bits

Exponent
10 bits

Mantissa

…

1 bits
Sign 8 bits

Exponent
7 bits

Mantissa

…

• Examples: 
Original value 0.0001
FP16: 0.00010001659393 (Binary: 0|00001|1010001110, Hex: 068E) 
BF16: 0.00010013580322 (Binary: 0|01110001|1010010, Hex: 38D2)

Original value 1e-08
FP16: 0.00000000000000 (Binary: 0|00000|0000000000, Hex: 0000)
BF16: 0.00000001001172 (Binary: 0|01100100|0101100, Hex: 322C)

Original value 100000.00001
FP16: inf (Binary: 0|11111|0000000000, Hex: 7C00)
BF16: 99840.0000000000000 (Binary: 0|10001111|1000011, Hex: 47C3)

BF16 provides a wider range at a cost of some precision → balance between range & numerical stability



Quantization

𝑄 = 𝑟𝑜𝑢𝑛𝑑
𝑟

𝑠

-0.5 1.5

-128

𝑄 = 𝑟𝑜𝑢𝑛𝑑
𝑟

𝑠
+Z

• Uniform, symmetric inputs

• Non-uniform, asymmetric inputs

Dequantization ǁ𝑟 = 𝑆 𝑄 + 𝑍 , 
Perplexity, error 𝜖 = ǁ𝑟 − r



Calibration: choosing scale and zero factor

https://medium.com/@AIBites/model-quantization-in-deep-neural-networks-81df49f3c7d8



Calibration: choosing scale and zero factor



Calibration: rectifying skews



Calibration: rectifying skews

When & How to calibrate? 

During or after training? 

Data skew is unknown a priori 



Quantization modes

• Post Training Quantization (PTQ)

➢Weight-only quantization: 

    Inflate model weights during computation

    May not need calibration dataset

➢Full quantization: 

    Weights + activation,  need calibration dataset

     Calibrations include:

o Output bias caused by quantization, add up to the final output

o Weights, based on mean and variance before/after quantization

Pre-Trained 
Model

Calibration 
Data

Calibration

Quantization Quantized Model



Quantization modes

• Post Training Quantization (PTQ)

• Quantization Aware Training (QAT)
• Quantization Aware Fine-Tuning (QAF)

• Challenge: quantization is not differentiable. 
• Solution:  
    Insert fake quantization operators in the graph to compute statistics of the inputs
    Once the model is trained, update weights and remove the fake operators
     

Trained Model

Training data Quantization

Re-training / Fine-tuning

Quantized Model



Quantization targets

a) Weights (W): reduce model sizes and memory footprint

b) Activation (X): reduce memory footprint and improve speed

c) KV cache: improve throughput

d) Gradients: training only – reduce networking costs



Weight-only quantization: LLM.int8()

• Decompose the matrix
• Use 8bit quantization for the majority, 16bit for outliers

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. 2022



Weight-only quantization: GPTQ

• Need calibration data

• Recursive process to 
• Quantize a block
• Update the remaining weights to 

recover accuracy lost

GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained Transformers. 2022



Weight-only quantization: AWQ

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration. 2023

• Keep salient weights (by observing the activation distribution) in FP16 
can greatly reduce quantization error 

• Use per-channel scaling

(Round To Nearest)



Full quantization: SmoothQuant

• Activations are harder to quantize

• Propose to smooth activations by 
transformation on the weights

• Use per-token and per-channel 
quantization

Accurate and Efficient Post-Training Quantization for Large Language Models. 2022



Quantization granularity

a) Per-tensor: whole layer of input matrices

b) Per-token & per-channel: slices of input 

matrices

c) Per-group: combination of above

(b), (c) result in mixed-precision 

quantization schemes. 
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Outline: LLMs serving techniques

• LLM decoding & system design

• Model quantization

• Continuous batching

• Speculative decoding



LLM decoding timeline



Batching requests to improve GPU utilization

Issues with static batching:

• Requests may complete at different iterations

• Idle GPU cycles

• New requests cannot start immediately



Continuous batching

• Higher GPU utilization

• New requests can start immediately

Orca:A Distributed Serving System for Transformer-Based Generative Models. OSDI’22



Continuous batching step-by-step

• Receives two new requests R1 and R2

R1: optimizing ML 
systems

R2: LLM serving is

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3



Continuous batching step-by-step

• Iteration 1: decode R1 and R2

Maximum serving batch 
size = 3

R1: optimizing ML 
systems

R2: LLM serving is

Iteration 1

Request Pool

(CPU)

Execution Engine

(GPU)



Continuous batching step-by-step

• Receive a new request R3; finish decoding R1 and R2

Maximum serving batch 
size = 3

R1: optimizing ML 
systems requires

R2: LLM serving is
critical.

Iteration 1

Request Pool

(CPU)

Execution Engine

(GPU)

R3: A man



Continuous batching step-by-step

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch 
size = 3

R3: A man is

R1: optimizing ML 
systems requires ML

R2: LLM serving is
critical. <EOS>

Iteration 2

Request Pool

(CPU)

Execution Engine

(GPU)

R4: A dog is

R5: How are



Continuous batching step-by-step

• Iteration 3: decode R1, R3, R4

Iteration 3

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R3: A man is

R1: optimizing ML 
systems requires ML

R4: A dog is

R5: How are



Outline: LLMs serving techniques

• LLM decoding & system design

• Model quantization

• Continuous batching

• Speculative decoding



Recall: LLM decoding is bottlenecked on memory bandwith

• Limited degree of parallelism → underutilized GPU resources

• Need all parameters to decode a token → bottlenecked by GPU memory access

[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]

Iterations: 0 1 2 3

Outputs:

Transformer Layer 1

Transformer Layer 96

LLM ……

Compute 
Resources*

Memory 
Bandwidth*

76%

2%

* Measured by serving LLAMA-2-70B on 4 A100 GPUs with 4K sequence length



Tradeoffs between language models

Large models

Pro: better generative performance

Con: slow and expensive to serve

Small models

Pro: cheap and fast

Con: less accurate

# Parameters 175B 13B 2.7B 760M 125M

TriviaQA 71.2 57.5 42.3 26.5 6.96

PIQA 82.3 79.9 75.4 72.0 64.3

SQuAD 64.9 62.6 50.0 39.2 27.5

latency 20 s 7.6s 2.7s 1.1s 0.3s

# A100s 10 1 1 1 1

* Language Models are Few-Shot Learners.Arxiv. 2005.14165

Comparing multiple GPT-3 models*



Speculative decoding

1. Use a small speculative model (SSM) to predict the LLM’s output

• SSM runs much faster than LLM

2. Use the LLM to verify the SSM’s prediction

[Accelerating LLM 
requires machine] learning systems

learning systems design

0 1 2

Small Speculative 

Model
Large Language Model

LLM is novel learning systems optimization principles

Verification

[Accelerate LLM requires machine ] learning systems design

Speculation



Verifying speculative decoding results

Large Language Model

[Accelerate LLM requires machine ] learning systems design SSM Predictions

Generate 3 new tokens in one LLM decoding step

LLM Outputs:

Input Prompt



Verifying speculative decoding results

Large Language Model

[Accelerate LLM requires machine ] learning systems design SSM Predictions

Generate 3 new tokens in one LLM decoding step

LLM Outputs:

Input Prompt

Quiz: 
how?



Verifying speculative decoding results



Verifying speculative decoding results

Key takeaway:

• LLM inference is bottlenecked by accessing model weights

• Using LLM to decode multiple tokens to improve GPU utilization

• Tradeoff between latency and throughput

Large Language Model

[Accelerate LLM requires machine ] learning systems design

LLM Outputs:

SSM PredictionsInput Prompt



(credits from https://github.com/FasterDecoding/Medusa)

Without speculative decoding                               With speculative decoding



Summary: LLMs serving techniques

• LLM decoding & system design

• Model quantization

• Continuous batching

• Speculative decoding

• What’s uncovered

• Server design & implementation

• New hardware

• Compilers

• Cloud systems

• Applications

Chef

(LLM)

Restaurant

(serving systems)

Disney world

(cloud systems)
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