CS6216 Advanced Topics in Machine Learning (Systems)

Yao LU 2025 Semester 1

National University of Singapore School of Computing

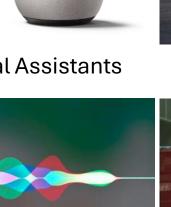
Course instructor

Yao LU, assistant professor in CS

- PhD in CS, University of Washington, 2018
- Researcher, Microsoft Research Redmond, 2014-2024
- Working on cloud, ML & data systems, LLM post-training solutions

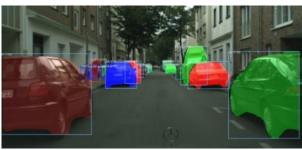
Outline

Why machine learning systems

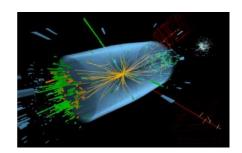

Some recent topics in ML systems research & production

Logistics

Successes of AI / ML Today



Personal Assistants



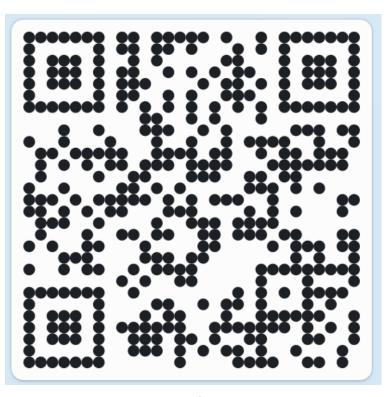
Robotics / Auto Driving

Al for Science

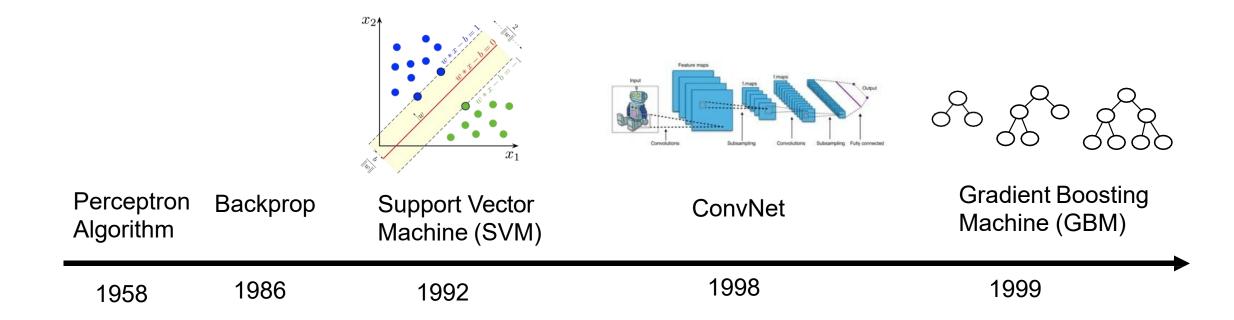
Search / Recom. / Ads

Big Bang of Generative Al

Large language models and ChatGPT



Colorful applications



Polling

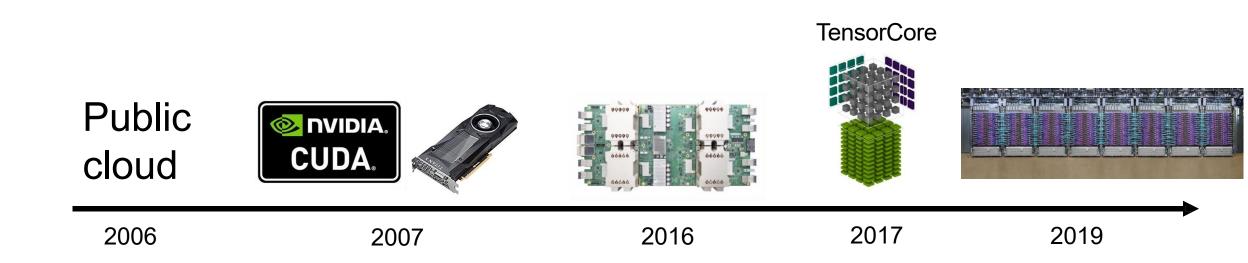
pe.app/yaolu1

1958 – 2000: ML Research

Many algorithms we use today were **created before 2000**

2000 – 2010: Arrival of Big Data

MTurk



2001 2004 2005 2009 2010

Data serves as fuel for machine learning models

Based on personal view. Source: Wikipedia

2006 – Now: Compute and Scaling

Compute scaling

Three Pillars of ML Applications

SVM ConvNet ML Research Backprop GBM 1958 NETFLIX IM. GENET Data 2000 **Public** <mark></mark> NVIDIA. **CUDA** Compute cloud 2007

AlexNet

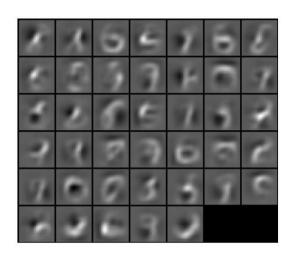
Year 2012

ML Research

SGD
Dropout
ConvNet
Pooling

Data

1M labeled images


Compute

Two Nvidia GTX 580 GPUs

Six days

Tianqi Chen's First Deep Learning project

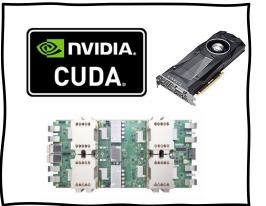
Year 2010

Language	files	blank	comment	code
С	3	84	721	22755
C/C++ Header	43	1773	2616	12324
CUDA	21	1264	1042	7871
C++	17	268	343	1472
MATLAB	9	49	9	245
make	3	26	10	84
Python	2	12	0	42
SUM:	98	3476	4741	44793

One model variant
44k lines of code, including CUDA kernels for GTX 470 Six
months of engineering effort

The project did not work out in the end.

Machine Learning Systems


ML Research

44k lines of code

Six months

Data

Compute

Machine Learning Systems

ResNet
Transformer

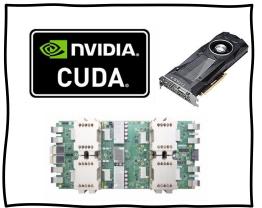
ML Research

100 lines of python

A few hours

System Abstractions

Systems (ML Frameworks)



Data

Compute

Machine Learning Systems

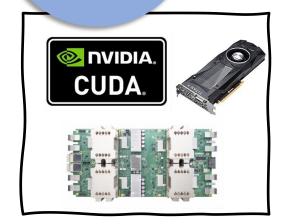
ResNet

Transformer

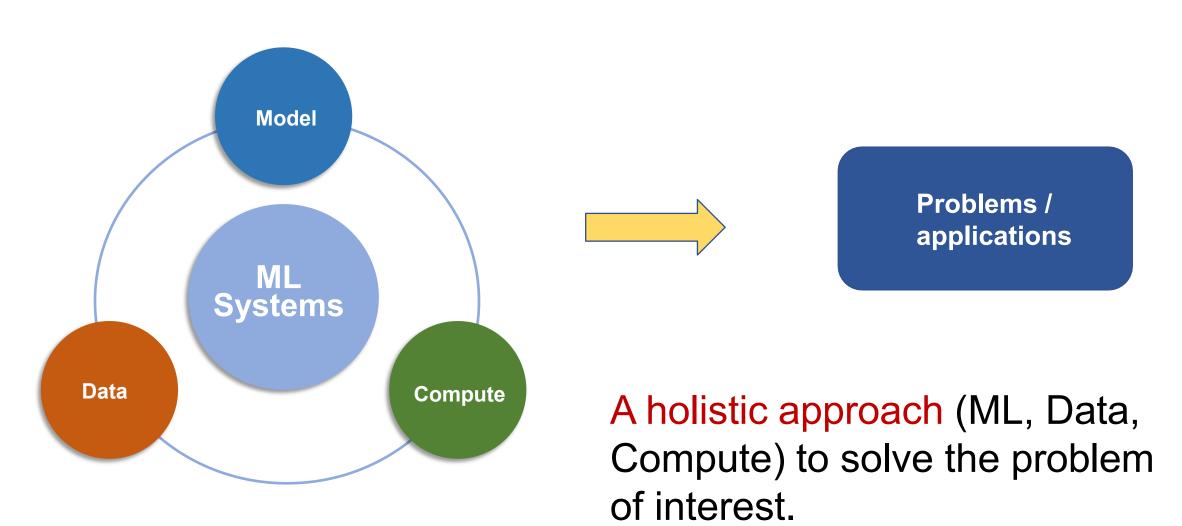
100 lines of python

A few hours

System Abstra


Systems (ML Frameworks)

ML Systems



MLSys as a Research Field

A practical problem

To improve pedestrian detection to be X-percent accurate, at Y-ms latency budget with Z-watt hardware

A Typical ML Approach

To improve pedestrian detection to be X-percent accurate, at Y-ms latency budget with Z-watt hardware

Design a better model with smaller amount of compute via pruning, distillation

A Typical Systems Approach

To improve pedestrian detection to be X-percent accurate, at Y-ms latency budget with Z-watt hardware

Build a better inference engine to reduce the latency and run more accurate models.

An MLSys Approach

To improve pedestrian detection to be X-percent accurate, at Y-ms latency budget with Z-watt hardware

- Data: acquire more sensor data and preprocess them
- Model: Develop models that fit the accuracy & latency budget
- Compute: Build end-to-end systems for the specific hardware
 - Edge devices & accelerators, sensor data pipelines, decision making

Another example - scale up!

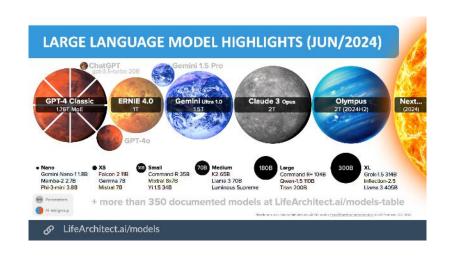
LARGE LANGUAGE MODEL HIGHLIGHTS (JUN/2024)

Nano
 Gemini-Nano-1 1.8B
 Mamba-2 2.7B
 Phi-3-mini 3.8B

● XS
Falcon 2 11B
Gemma 7B
Mistral 7B

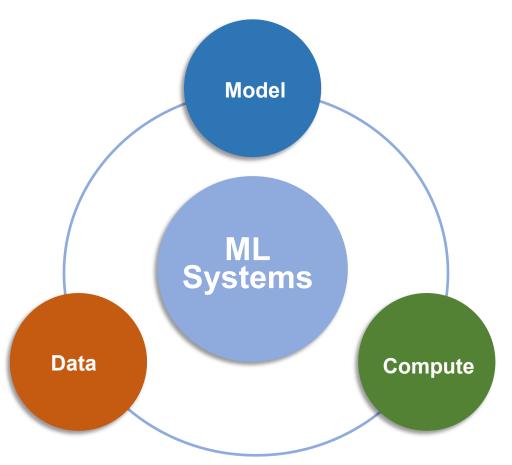
Command-R 35B Mixtral 8x7B Yi 1.5 34B Medium
K2-65B
Llama 3 70B
Luminous Supreme

Large Command R+ 104B Qwen-1.5 110B Titan 200B 300B XL Grok-1.5 314B Inflection-2.5 Llama 3 405B



+ more than 350 documented models at LifeArchitect.ai/models-table

Sizes linear to scale, Selected highlights only, All 350+ models; https://lifearchitect.ai/models-table/ Alan D. Thompson, 2021-2024.


An MLSys Approach

Train an LLM with 1T parameters and maximize model quality

- Data: acquire more data and preprocess them
- Model: Design models that optimize for the specific model size
- Systems: Build end-to-end systems that enable training on a distributed cluster
 - Networking, storage, scheduling, failure recovery etc.

MLSys as an Emerging Research Field

Al Systems Workshop at NeurlPS

MLSys tracks at Systems/DB/Networking conferences

Conference on Machine Learning and Systems (MLSys.org)

MLSys as a Startup Arena

together.ai

Hugging Face

LlamaIndex

Why Study Machine Learning and Systems?

Reason #1 AI is the future. Systems for AI is the foundation.

Reason #2 A full-stack and holistic approach to push the frontier of Al research and production.

Reason #3 Industry: high demand, low supply → high \$\$\$

Outline

Why machine learning systems

Some recent topics in ML systems research & production

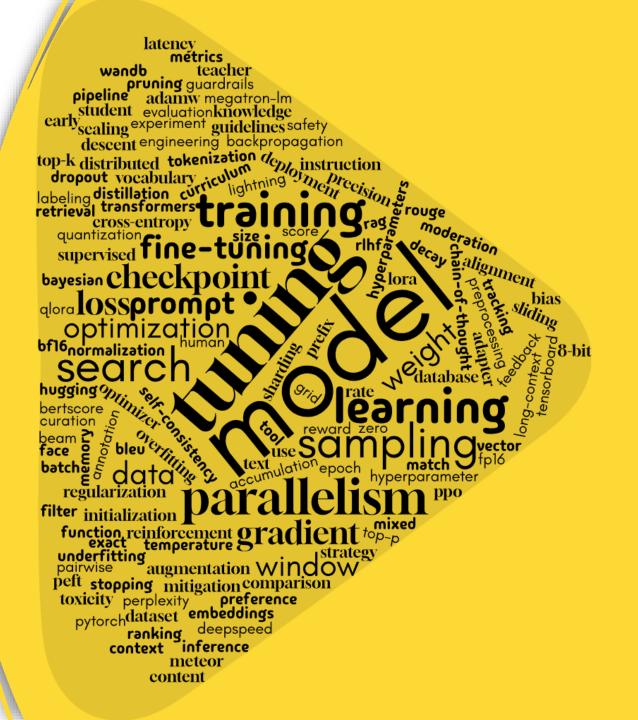
Logistics

New hardware

Edge / personal AI devices

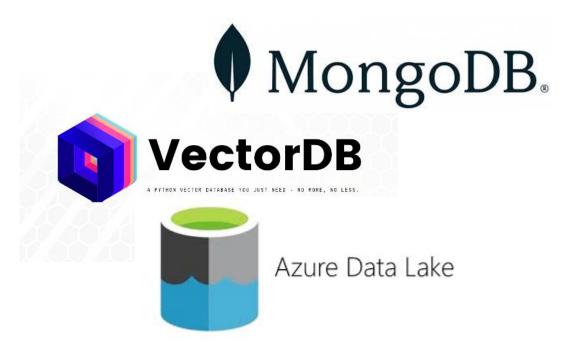
"New" architecture:

CPU+GPU unified memory


- Improve accuracy / performance & reduce costs
- Software-hardware co-design

New Al paradigms

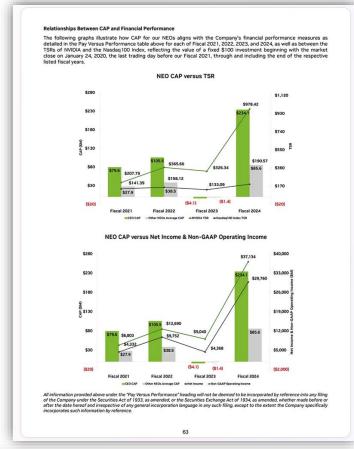
- LLM Pre-training → Post-training
- Modular, (can be) distributed, focusing on end goals


Data infrastructures

Data management for AI:

acquisition, cleaning, structurization, transformation, annotation, visualization

Al-aided data management & curation


Data systems for AI:

embedding, storage, indexing, retrieval, query processing,

LLM-based data analytics

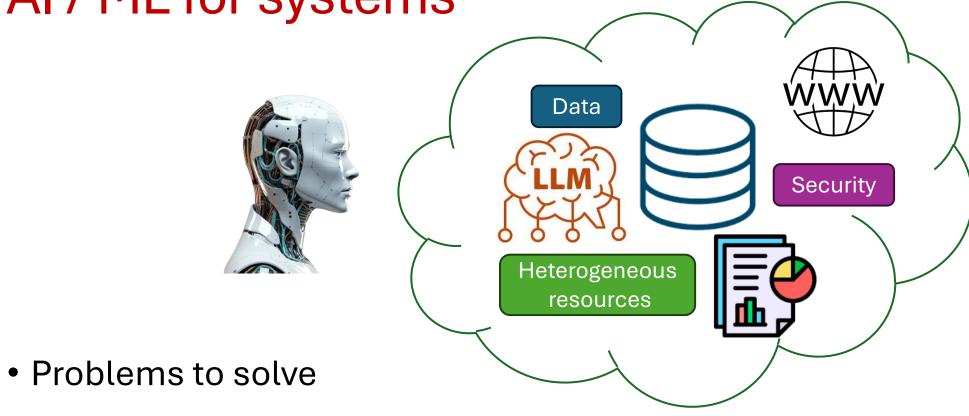
A practical case: Al + finance

- Analyzing 100TB multi-modal data:
 - Time series: stock prices, economic data
 - Unstructured text: news, Twitter, SEC filings in HTMLs
 - Structure info: fundamentals
- LLM tasks:
 - Data preparation
 - Prediction, sentiment analyses, QA
 - Planning, reasoning, simulation

Advanced systems

Restaurant

(serving systems)



Disney world (cloud systems)

From serving to cloud systems:

- Multi-tenancy: from scaling-up to scaling-out (models, users, applications, tasks etc.)
- Operations of large-scale, heterogeneous infrastructures

AI / ML for systems

- Use AI to monitor & operate the cloud
- Use AI/ML to improve individual cloud components
- Reduce operating costs

Applications

- RAGs
- LLM agents
- Deep research

"Make slides for MoE models" =>

Outline

Why machine learning systems

Some recent topics in ML systems research & production

• Logistics

Pre-requisitions

- UG machine learning or equivalent
- UG operating systems or equivalent
- Strong Python programming
- (Optional) C/C++/Rust programming
- This is a system-focused course, not intended for only LLM algorithms / modeling

Course schedule (subject to change)

Week	Date	Lecture	HW schedule	HW Topic
1	08-13	Intro	HW1 out	ML and systems basics
2	08-20	ML sys foundations		
3	08-27	Al framework and autograd	HW1 due (more time)	
4	09-03	Hardware acceleration	HW2 out	AI framework + autograd
5	09-10	Training technologies		
6	09-17	Transformers, attention and optimizations	HW2 due	
	09-24	Recess		
7	10-01	Serving LLMs	HW3 out	LLM inference
8	10-08	Post-training techniques		
9	10-15	Multi-modal models	HW3 due	
10	10-22	Application systems	HW4 out	LLM serving
11	10-29	LLM safety (TBD)		
12	11-05	Cloud systems for AI	HW4 due	
13	11-12	Project presentation		

Assignments and grading

Paper reading and discussion

Mandatory, each weak 20%

Coding/Written assignments & course projects

- HW1 mandatory 20%
- HW2-4 can be substituted partly or entirely by course projects 60% combined e.g.: all HW2-4 and no project, all project, no HW2-4, HW1 + project

Course projects (normalized to 100%)

- Group of 2-3 people
- The fewer HW1-3 you take / the more people, the higher expectation
- Choice & proposal by Week 3. (10%)
- Mid-term report by the end of Recess week. (20%)
- Final report by the end of Week 13. (40%)
- Presentations in Week 13. (30%)
- Topics: ML <u>systems</u> related. Pure ML/AI/CV/NLP projects are not acceptable.

Resources

- HW0: no GPU is needed. HW1-3 GPU programming as bonus
- GPU clusters at SOC

Example projects

Accelerating deep research workflows

Self-evolving LLM agents

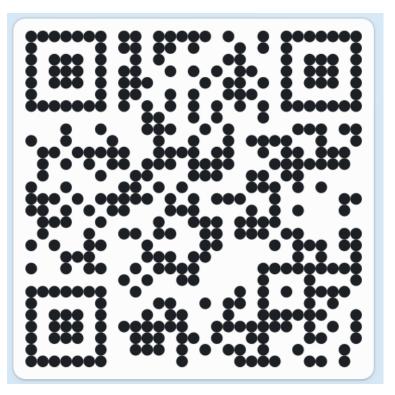
LLM distillation and alignment

LLM on personal AI devices

Communications

- Instructor email: luyao@comp.nus.edu.sg
- TA email: j1shen@comp.nus.edu.sg
 noppanat@comp.nus.edu.sg

Project discussion by appointment


Canvas

- Notifications
- Gradebook
- Homework upload

Disclaimers

- This is the 2nd offering of this course. There are not many similar offerings around the world.
- Industry & open-source world evolving ultra fast.
- The material and outline will likely adjust throughout the semester.
- There will be bugs in the content or assignments.

Concerns & comments?

pe.app/yaolu1