
CS6216 Advanced Topics in Machine Learning (Systems)

MLsys Foundations

Yao LU
20 Aug 2025

National University of Singapore
School of Computing

ML Systems Overview

ML
Systems

Model

Data Compute

• Three components

• ML tasks
• Training / tuning

• Inference

Models
• What are models?

Clustering Random Forest Perceptron

Linear regression PCA Reinforcement learning

• Models = algorithms?

• How to define, store & use models?

Model definitions

• PyTorch, Tensorflow, JAX etc. use functional declarations

• Direct mapping to a compute graph, no ambiguity

Model definition

+

x

y
*

z

𝑓
+

q

p

(not matching code)

A variety of ML systems
• ML systems exist for Boosting trees, Graph neural networks etc.

• This lecture focuses on Large Generative Models (LGMs)

• Deep neural networks trained w/ Stochastic Gradient Descent (SGD)

• Post-training paradigms

A variety of ML systems
• ML systems exist for Boosting trees, Graph neural networks etc.

• This lecture focuses on Large Generative Models (LGMs)

• Deep neural networks trained w/ Stochastic Gradient Descent (SGD)

• Post-training paradigms

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

Model inputs Model prediction

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

Forward propagation

Model inputs Model prediction

Inference stops here

Algorithmic workflows: recap

Backward propagation

Model inputs Model prediction

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

Compute loss/gradients

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

𝑤𝑖 ≔𝑤𝑖 −𝛾 ∇ 𝐿 𝑤𝑖 =𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗 (𝑤𝑖)

Back propagation by example

• 𝑒 = 𝑎 + 𝑏 ⋅ (𝑏 + 1), compute the following :

𝑒

𝑎

𝑑𝑐

𝑏

+ +1

∗

Applying chain rule to compute gradient
• Back-tracking from the root to write down partial

derivatives. + for branches, * for adjacent nodes

𝜕𝑒

𝜕𝑐
=

𝜕𝑒

𝜕𝑑
=

𝜕𝑒

𝜕𝑎
=

𝜕𝑒

𝜕𝑏
=

Back propagation by example

• 𝑒 = 𝑎 + 𝑏 ⋅ (𝑏 + 1), compute the following :

𝑒

𝑎

𝑑𝑐

𝑏

+ +1

∗

Applying chain rule to compute gradient
• Back-tracking from the root to write down partial

derivatives. + for branches, * for adjacent nodes

𝜕𝑒

𝜕𝑐
=

𝜕(𝑐 ⋅ 𝑑)

𝜕𝑐
= 𝑑

𝜕𝑒

𝜕𝑑
=

𝜕(𝑐 ⋅ 𝑑)

𝜕𝑑
= 𝑐

𝜕𝑒

𝜕𝑎
=

𝜕𝑒

𝜕𝑐
⋅

𝜕𝑐

𝜕𝑎
= 𝑑 ⋅ 1 = 𝑑

𝜕𝑒

𝜕𝑏
=

𝜕𝑒

𝜕𝑐
⋅

𝜕𝑐

𝜕𝑏
+

𝜕𝑒

𝜕𝑑
⋅

𝜕𝑑

𝜕𝑏
= 𝑐 + 𝑑

Back propagation by example

• 𝑒 = 𝑎 + 𝑏 ⋅ (𝑏 + 1), compute the following :

𝑒

𝑎

𝑑𝑐

𝑏

+ +1

∗

Applying chain rule to compute gradient
• Back-tracking from the root to write down partial

derivatives. + for branches, * for adjacent nodes

• Given the actual Loss, compute gradient digits

A lot of repetitive compute

• Proper caching & reusing in the graph nodes

𝜕𝑒

𝜕𝑐
=

𝜕(𝑐 ⋅ 𝑑)

𝜕𝑐
= 𝑑

𝜕𝑒

𝜕𝑑
=

𝜕(𝑐 ⋅ 𝑑)

𝜕𝑑
= 𝑐

𝜕𝑒

𝜕𝑎
=

𝜕𝑒

𝜕𝑐
⋅

𝜕𝑐

𝜕𝑎
= 𝑑 ⋅ 1 = 𝑑

𝜕𝑒

𝜕𝑏
=

𝜕𝑒

𝜕𝑐
⋅

𝜕𝑐

𝜕𝑏
+

𝜕𝑒

𝜕𝑑
⋅

𝜕𝑑

𝜕𝑏
= 𝑐 + 𝑑

Building forward & backward compute graph

Model definition

+

x

y
*

z

𝑓
+

q

p

𝜕𝑙

𝜕𝑓

id

*

*
+

id

id

Forward

computation

graph

Backward

computation

graph

𝜕𝑙

𝜕𝑞

𝜕𝑙

𝜕𝑝

𝜕𝑙

𝜕𝑧

𝜕𝑙

𝜕𝑦

𝜕𝑙

𝜕𝑥

(not matching code)

Compute
graph

builder

Back propagation for LSTM
• Long-short term memory (LSTM)

• Derive the back-prop formulations for all parameters

• Instructor’s experience 10 years back:
• 1 full page of equations, 30~40 steps
• Implementing on GPU, extremely hard to debug

How about very large neural networks?

• We need
• Automatic computation of gradients
• Optimization with proper caching and compute node reuse

Quiz : back propagation for MLP

• MLP is a simple DNN, where a single perceptron is defined as:

• A 2-layer perceptron for univariate regression with 𝑙2 loss:

 derive gradients for 𝑊 and 𝑉.

𝑥1

𝑥2

𝑥𝑚

𝑢1

𝑢𝑝

𝑧

…

…

𝑣𝑖𝑗

𝑤𝑗

𝑧 = 𝜎 𝑊 ⋅ 𝑢 + 𝑏
𝑢 = 𝜎 𝑉 ⋅ 𝑥 + 𝑏

𝜎 𝑥 =
1

1 + 𝑒−𝑥

𝑦 = 𝜎(𝑊 ⋅ 𝑥 + 𝑏)

hint: 𝜎′ 𝑥 = 𝜎(𝑥)(1 − 𝜎 𝑥)

Computational graph construction by step

W

matmult softmax

x

y

Construct the compute graph for 𝑦 = softmax(𝑊 ⋅ 𝑥) with cross entropy loss
1. Construct forward graph

W

x

matmult softmax log

y_

mul mean
y cross_entropy

Computational graph construction by step

Construct the compute graph for 𝑦 = softmax(𝑊 ⋅ 𝑥) with cross entropy loss
1. Construct forward graph
2. Add loss compute nodes

W

x

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad

cross_entropyy
matmult softmax log mul mean

y_

Computational graph construction by step

Construct the compute graph for 𝑦 = softmax(𝑊 ⋅ 𝑥) with cross entropy loss
1. Construct forward graph
2. Add loss compute nodes

3. Construct backward graph by automatic differentiation More details in the next lecture

W

learning_rate

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad

assign

sub

Mul

y cross_entropy

Computational graph construction by step

Construct the compute graph for 𝑦 = softmax(𝑊 ⋅ 𝑥) with cross entropy loss
1. Construct forward graph
2. Add loss compute nodes

3. Construct backward graph by automatic differentiation
4. Update model weights

Mapping compute graph to actual runtime

• Key factors to consider:
• Graph dependency
• Parallelism & batching
• Driver & API

• CPU, GPU, TPU, FPGA, etc.
• Each architecture has corresponding libraries and APIs

• Optimizations:
• Operator code-gen and fusion
• Graph-level optimizations

Execution of the compute graph: data parallelism

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

𝑤𝑖 ≔𝑤𝑖 −𝛾 ∇ 𝐿 𝑤𝑖 =𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗 (𝑤𝑖)

1. Partition training data into batches 2. Compute the gradients of
each batch on a GPU

Gradients
Aggregation

3. Aggregate gradients
across GPUs

GPU 1

• Split a model into multiple subgraphs and assign them to different devices

GPU 2

ML Model

Training Dataset

Model

Parallelism

Transfer

intermediate

results

between

devices

𝑤𝑖 ≔𝑤𝑖 −𝛾∇𝐿 𝑤𝑖 =𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

Execution of the compute graph: model parallelism

GPU 1

• Split a model into multiple subgraphs and assign them to different devices.

Run them by proper scheduling.

ML Model

Training Dataset

Pipeline

Parallelism

𝑤𝑖 ≔𝑤𝑖 −𝛾∇𝐿 𝑤𝑖 =𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

GPU 2

GPU 1 GPU 2

cache

aggregate

Execution of the compute graph: pipeline parallelism

A variety of ML systems
• ML systems exist for Boosting trees, Graph neural networks etc.

• This lecture focuses on Large Generative Models (LGMs)

• Deep neural networks trained w/ Stochastic Gradient Descent (SGD)

• Post-training paradigms

• A large trend to move from pre-training → post-training
• To *greatly* save costs while preserving model abilities
• Reasoning ↑↑↑

• Labeling: text → CoT

Post-training paradigms

• A large trend to move from pre-training → post-training
• To *greatly* save costs while preserving model abilities
• Reasoning ↑↑↑

• Labeling: text → CoT

• Compute: modularized training/inference
• Distillation, reward models, SFT, RL
• Agents, RAGs, workflows

Post-training paradigms

Compute graph (again) on a coarse granularity

• Example task: give me a 7B reasoning model specialized in healthcare
• DeepSeek-R1 671B too big & expensive
• I don’t care about astrophysics or Shakespeare

• System designs & optimizations : more details later in this course.

DeepSeek-
R1 671B

Healthcare
knowledge base

CoT dataset
Distill

RAG

Qwen-7B-
reasoning

SFT

Reward
model(s)

Qwen-7B-
reasoning+

RL

Preference labels

Compute graph (again) on a coarse granularity

• Example task: solving a task using a multi-agent framework
• Collaborative, reflections, multi-round invocations of LLMs

• System designs & optimizations : more details later in this course.

Fine-granularity techniques & optimizations

Systems

Coarse-granularity techniques & optimizations

Misc

Systems

Course structure

Summary: core modules in MLsys

• R&D optimizes for
• Training / Tuning:

 efficiency & scalability

• Inference / Serving:

 latency & throughput

• Cloud efficiency

Model, compute graph

Runtime / compute

Data

• Graph optimization
• Model specific technologies

• Storage & caching
• Data preparation & quality

• Kernel optimization
• Code generation
• New hardware

• Resource & job scheduling
• Operation & tuning
• Multiplexing

Archaeology
• Data & ML systems share many common ideas

• Compute graph is an old thing
• SQL query / execution plan

• Difference in programming model
• Functional: high level language > intermedia representation > optimizer > execution plan
• Declarative: same, but a much larger search space
• Graph-based query optimization is an old thing as well

• Lots of idea can often reuse! Come to my other database course.

Data systems ML systems

Originate 1970s 2010s

Programming model Declarative Functional

Graph-based
optimization

Operator fusion,
reordering, ….

Operator fusion,
reordering…

Parallelism Data, pipeline Data, tensor, pipeline

A SQL query plan

Logistics

• Homework 1 is out

• Overview of Homework 2-4
• HW2: back propagation and autograd
• HW3: framework & LLM inference
• HW4: LLM serving & RAG

Reading for the next lecture

• How to read a paper

• TensorFlow: A System for Large-Scale Machine Learning
 OSDI 2016

• QA / interaction in class

http://ccr.sigcomm.org/online/files/p83-keshavA.pdf
http://ccr.sigcomm.org/online/files/p83-keshavA.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) MLsys Foundations
	Slide 2: ML Systems Overview
	Slide 3: Models
	Slide 4: Model definitions
	Slide 5: A variety of ML systems
	Slide 6: A variety of ML systems
	Slide 7: Algorithmic workflows: recap
	Slide 8: Algorithmic workflows: recap
	Slide 9: Algorithmic workflows: recap
	Slide 10: Algorithmic workflows: recap
	Slide 11: Back propagation by example
	Slide 12: Back propagation by example
	Slide 13: Back propagation by example
	Slide 14: Building forward & backward compute graph
	Slide 15: Back propagation for LSTM
	Slide 16: How about very large neural networks?
	Slide 17: Quiz : back propagation for MLP
	Slide 18: Computational graph construction by step
	Slide 19: Computational graph construction by step
	Slide 20: Computational graph construction by step
	Slide 21: Computational graph construction by step
	Slide 22: Mapping compute graph to actual runtime
	Slide 23: Execution of the compute graph: data parallelism
	Slide 24: Execution of the compute graph: model parallelism
	Slide 25: Execution of the compute graph: pipeline parallelism
	Slide 26: A variety of ML systems
	Slide 27: Post-training paradigms
	Slide 28: Post-training paradigms
	Slide 29: Compute graph (again) on a coarse granularity
	Slide 30: Compute graph (again) on a coarse granularity
	Slide 31: Course structure
	Slide 32: Summary: core modules in MLsys
	Slide 33: Archaeology
	Slide 34: Logistics
	Slide 35: Reading for the next lecture

