#### CS6216 Advanced Topics in Machine Learning (Systems)

#### **MLsys Foundations**

Yao LU 20 Aug 2025

National University of Singapore School of Computing

# **ML Systems Overview**



Three components

- ML tasks
  - Training / tuning
  - Inference

### Models

What are models?



- Models = algorithms?
- How to define, store & use models?

### Model definitions

- PyTorch, Tensorflow, JAX etc. use functional declarations
  - Direct mapping to a compute graph, no ambiguity

```
class ToyModel(nn.Module):
    def __init__(self):
        super(ToyModel, self).__init__()
        self.net1 = torch.nn.Linear(10, 10).to('cuda:0')
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(10, 5).to('cuda:1')

def forward(self, x):
        x = self.relu(self.net1(x.to('cuda:0')))
        return self.net2(x.to('cuda:1'))
```





Model definition

(not matching code)

## A variety of ML systems

- ML systems exist for Boosting trees, Graph neural networks etc.
- This lecture focuses on Large Generative Models (LGMs)
  - Deep neural networks trained w/ Stochastic Gradient Descent (SGD)
  - Post-training paradigms

## A variety of ML systems

- ML systems exist for Boosting trees, Graph neural networks etc.
- This lecture focuses on Large Generative Models (LGMs)
  - Deep neural networks trained w/ Stochastic Gradient Descent (SGD)
  - Post-training paradigms

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- Backward propagation: run the model in reverse to produce error for each trainable weight
- 3. Weight update: use the loss value to update model weights



Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- Backward propagation: run the model in reverse to produce error for each trainable weight
- 3. Weight update: use the loss value to update model weights



Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- Backward propagation: run the model in reverse to produce error for each trainable weight
- 3. Weight update: use the loss value to update model weights



**Backward propagation** 

**Compute loss/gradients** 

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- 2. Backward propagation: run the model in reverse to produce error for each trainable weight
- 3. Weight update: use the loss value to update model weights

$$w_i := w_i - \gamma \nabla L(w_i) = w_i - \frac{\gamma}{n} \sum_{j=1}^n \nabla L_j(w_i)$$

## Back propagation by example

•  $e = (a + b) \cdot (b + 1)$ , compute the following:



$$\frac{\partial e}{\partial c} =$$

$$\frac{\partial e}{\partial d} =$$

$$\frac{\partial e}{\partial a} =$$

$$\frac{\partial e}{\partial h} =$$

#### Applying chain rule to compute gradient

 Back-tracking from the root to write down partial derivatives. + for branches, \* for adjacent nodes

## Back propagation by example

•  $e = (a + b) \cdot (b + 1)$ , compute the following:



$$\frac{\partial e}{\partial c} = \frac{\partial (c \cdot d)}{\partial c} = d$$

$$\frac{\partial e}{\partial d} = \frac{\partial (c \cdot d)}{\partial d} = c$$

$$\frac{\partial e}{\partial a} = \frac{\partial e}{\partial c} \cdot \frac{\partial c}{\partial a} = d \cdot 1 = d$$

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial c} \cdot \frac{\partial c}{\partial b} + \frac{\partial e}{\partial d} \cdot \frac{\partial d}{\partial b} = c + d$$

#### Applying chain rule to compute gradient

 Back-tracking from the root to write down partial derivatives. + for branches, \* for adjacent nodes

## Back propagation by example

•  $e = (a + b) \cdot (b + 1)$ , compute the following:



$$\frac{\partial e}{\partial c} = \frac{\partial (c \cdot d)}{\partial c} = d$$

$$\frac{\partial e}{\partial d} = \frac{\partial (c \cdot d)}{\partial d} = c$$

$$\frac{\partial e}{\partial a} = \frac{\partial e}{\partial c} \cdot \frac{\partial c}{\partial a} = d \cdot 1 = d$$

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial c} \cdot \frac{\partial c}{\partial b} + \frac{\partial e}{\partial d} \cdot \frac{\partial d}{\partial b} = c + d$$

#### Applying chain rule to compute gradient

- Back-tracking from the root to write down partial derivatives. + for branches, \* for adjacent nodes
- Given the actual Loss, compute gradient digits

#### A lot of repetitive compute

Proper caching & reusing in the graph nodes

# Building forward & backward compute graph

```
class ToyModel(nn.Module):
    def __init__(self):
        super(ToyModel, self).__init__()
        self.net1 = torch.nn.Linear(10, 10).to('cuda:0')
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(10, 5).to('cuda:1')

def forward(self, x):
        x = self.relu(self.net1(x.to('cuda:0')))
        return self.net2(x.to('cuda:1'))
```

Model definition



Compute graph builder



Forward computation graph

Backward computation graph

(not matching code)

# Back propagation for LSTM

Long-short term memory (LSTM)



$$f_t = \sigma_g (W_f \times x_t + U_f \times h_{t-1} + b_f)$$

$$i_t = \sigma_g (W_i \times x_t + U_i \times h_{t-1} + b_i)$$

$$o_t = \sigma_g (W_o \times x_t + U_o \times h_{t-1} + b_o)$$

$$c'_t = \sigma_c (W_c \times x_t + U_c \times h_{t-1} + b_c)$$

$$c_t = f_t \cdot c_{t-1} + i_t \cdot c'_t$$

$$h_t = o_t \cdot \sigma_c (c_t)$$

- Derive the back-prop formulations for all parameters
- Instructor's experience 10 years back:
  - 1 full page of equations, 30~40 steps
  - Implementing on GPU, extremely hard to debug

## How about very large neural networks?

- We need
  - Automatic computation of gradients
  - Optimization with proper caching and compute node reuse



# Quiz: back propagation for MLP

• MLP is a simple DNN, where a single perceptron is defined as:

$$y = \sigma(W \cdot x + b)$$



$$z = \sigma(W \cdot u + b)$$
 hint:  $\sigma'(x) = \sigma(x)(1 - \sigma(x))$   

$$u = \sigma(V \cdot x + b)$$
  

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

derive gradients for W and V.



Construct the compute graph for  $y = \operatorname{softmax}(W \cdot x)$  with cross entropy loss

1. Construct forward graph



Construct the compute graph for  $y = \operatorname{softmax}(W \cdot x)$  with cross entropy loss

- 1. Construct forward graph
- 2. Add loss compute nodes



Construct the compute graph for  $y = \operatorname{softmax}(W \cdot x)$  with cross entropy loss

- 1. Construct forward graph
- 2. Add loss compute nodes



3. Construct backward graph by automatic differentiation More details in the next lecture

Construct the compute graph for  $y = \operatorname{softmax}(W \cdot x)$  with cross entropy loss

- 1. Construct forward graph
- 2. Add loss compute nodes



- 3. Construct backward graph by automatic differentiation
- 4. Update model weights

# Mapping compute graph to actual runtime

- Key factors to consider:
  - Graph dependency
  - Parallelism & batching
  - Driver & API



- CPU, GPU, TPU, FPGA, etc.
  - Each architecture has corresponding libraries and APIs



- Optimizations:
  - Operator code-gen and fusion
  - Graph-level optimizations

### Execution of the compute graph: data parallelism



1. Partition training data into batches

- 2. Compute the gradients of each batch on a GPU
- 3. Aggregate gradients across GPUs

#### Execution of the compute graph: model parallelism

Split a model into multiple subgraphs and assign them to different devices



### Execution of the compute graph: pipeline parallelism

Split a model into multiple subgraphs and assign them to different devices.
 Run them by proper scheduling.



 $w_i := w_i - \gamma \nabla L(w_i) = w_i - \frac{\gamma}{n} \sum_{i=1}^n \nabla L_i(w_i)$ 

## A variety of ML systems

- ML systems exist for Boosting trees, Graph neural networks etc.
- This lecture focuses on Large Generative Models (LGMs)
  - Deep neural networks trained w/ Stochastic Gradient Descent (SGD)
  - Post-training paradigms

### Post-training paradigms

- A large trend to move from pre-training → post-training
  - To \*greatly\* save costs while preserving model abilities
  - Reasoning 111
- Labeling: text → CoT

#### Standard Prompting

#### **Model Input**

- Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
- A: The answer is 11.
- Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

#### **Chain-of-Thought Prompting**

#### Model Input

- Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
- A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
- Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

#### Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.









#### Model Output

A: The answer is 27.



### Post-training paradigms

- A large trend to move from pre-training → post-training
  - To \*greatly\* save costs while preserving model abilities
  - Reasoning 111

Labeling: text → CoT

- Compute: modularized training/inference
  - Distillation, reward models, SFT, RL
  - Agents, RAGs, workflows



### Compute graph (again) on a coarse granularity

- Example task: give me a 7B reasoning model specialized in healthcare
  - DeepSeek-R1 671B too big & expensive
  - I don't care about astrophysics or Shakespeare



System designs & optimizations: more details later in this course.

### Compute graph (again) on a coarse granularity

- Example task: solving a task using a multi-agent framework
  - Collaborative, reflections, multi-round invocations of LLMs



• System designs & optimizations: more details later in this course.

#### Course structure

| Lecture<br>date | Plan                                                                           | Lecturer<br>if not Yao | Note                                 |
|-----------------|--------------------------------------------------------------------------------|------------------------|--------------------------------------|
| Aug 13          | Week 1: Introduction [slides]                                                  |                        | [HW1 Release]                        |
| Aug 20          | Week 2: MLsys foundations                                                      |                        |                                      |
| Aug 27          | Week 3: Automatic differentiation                                              |                        | HW1 due                              |
| Sep 03          | Week 4: Hardware acceleration                                                  |                        | [HW2 Release]                        |
| Sep 10          | Week 5: Parallelism and training techniques                                    |                        |                                      |
| Sep 17          | Week 6: <b>Transformers, Attention and Optimizations</b>                       |                        | HW2 due, Project proposal due        |
| Sep 24          | Recess week                                                                    |                        |                                      |
| Oct 01          | Week 7: Serving LLMs                                                           |                        | [HW3 Release]                        |
| Oct 08          | Week 8: Post-training techniques                                               |                        |                                      |
| Oct 15          | Week 9: Multi-Modal Models                                                     |                        | HW3 due, Mid-term project report due |
| Oct 22          | Week 10: <b>Application Systems: Al Agents, RAGs, Deep Research and beyond</b> |                        | [HW4 Release]                        |
| Oct 29          | Week 11: LLM Safety                                                            |                        |                                      |
| Nov 05          | Week 12: Cloud systems for Al                                                  |                        |                                      |
| Nov 12          | Week 13: <b>Project presentations</b>                                          |                        | HW4 due, final project report due    |

Fine-granularity techniques & optimizations

Systems

Coarse-granularity techniques & optimizations

Misc

Systems

## Summary: core modules in MLsys

- Graph optimization
- Model specific technologies
- Storage & caching
- Data preparation & quality



- Kernel optimization
- Code generation
- New hardware

- R&D optimizes for
  - Training / Tuning: efficiency & scalability
  - Inference / Serving: latency & throughput
  - Cloud efficiency

# Archaeology

- Data & ML systems share many common ideas
- Compute graph is an old thing
  - SQL query / execution plan
- Difference in programming model
  - Functional: high level language > intermedia representation > optimizer > execution plan
  - Declarative: same, but a much larger search space
  - Graph-based query optimization is an old thing as well
- Lots of idea can often reuse! Come to my other database course.

|                          | Data systems                 | ML systems                  |
|--------------------------|------------------------------|-----------------------------|
| Originate                | 1970s                        | 2010s                       |
| Programming model        | Declarative                  | Functional                  |
| Graph-based optimization | Operator fusion, reordering, | Operator fusion, reordering |
| Parallelism              | Data, pipeline               | Data, tensor, pipeline      |





# Logistics

• Homework 1 is out

- Overview of Homework 2-4
  - HW2: back propagation and autograd
  - HW3: framework & LLM inference
  - HW4: LLM serving & RAG

## Reading for the next lecture

How to read a paper

TensorFlow: A System for Large-Scale Machine Learning
 OSDI 2016

QA / interaction in class