CS6216 Advanced Topics in Machine Learning (Systems)
MLsys Foundations

Yao LU
20 Aug 2025

National University of Singapore
School of Computing

ML Systems Overview

* Three components

* ML tasks
* Training / tuning

* |Inference

Compute

Models

e What are models?

| —
—

]
| E—

* Models = algorithms?

a1 ey Y
o s 4
ad [T ‘ I'-_
arf " S e il
ar anl] “- Iy .
2 104 . T :) ‘
R S 3 Layer Layer

Clustering Random Forest Perceptron

B — e How to define, store & use models?

Linear regression PCA Reinforcement learning

Model definitions

* PyTorch, Tensorflow, JAX etc. use functional declarations

* Direct mapping to a compute graph, no ambiguity

class ToyModel (nn.Module): X
def __init__(): p
supex (ToyModel,).__dinit__ Q)

.netl = torch.nn.Linear(10, 10).to('cuda:@"')
.relu = torch.nn.RelLU() y
.net2 = torch.nn.Lineax (10, 5).to('cuda:1"')
£]?

def forward(
X = +relu(.netl(x.to('cuda:0')))
return net2(x.to('cuda:1')) Z q

Model definition

A variety of ML systems

* ML systems exist for Boosting trees, Graph neural networks etc.

* This lecture focuses on Large Generative Models (LGMs)
* Deep neural networks trained w/ Stochastic Gradient Descent (SGD)

* Post-training paradigms

A variety of ML systems

* ML systems exist for Boosting trees, Graph neural networks etc.

* This lecture focuses on Large Generative Models (LGMs)
* Deep neural networks trained w/ Stochastic Gradient Descent (SGD)

* Post-training paradigms

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)
Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

: run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs 158 Model prediction

ooooooo
CCCCCC

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)
Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

: run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs 158 Model prediction

i

ooooooo

= Forward propagation Inference stops here

(1L

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)
Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs 158 Model prediction

i

ooooooo

N Backward propagation =~ Compute loss/gradients

4

Algorithmic workflows: recap

Stochastic Gradient Descent (SGD)
Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

T A Gy
w i=w — YL =w; nle](Wl)

=1

Back propagation by example

ce=(a+b) (b+ 1), compute the following :

de Applying chain rule to compute gradient

ac * Back-tracking from the root to write down partial

e derivatives. + for branches, * for adjacent nodes

de

oo

+ +1 ae_
OO da
ae_

=

Back propagation by example

ce=(a+b) (b+ 1), compute the following :

ae_a(c-d)_d

ac ac

de 0d(c-d)
od ad
de B de Odc B
da dc da
de B de dc

C

1=d

de dd

b _ac ab T

5d b ¢t

Applying chain rule to compute gradient

Back-tracking from the root to write down partial

derivatives. + for branches, * for adjacent nodes

Back propagation by example

ce=(a+b) (b+ 1), compute the following :

de d(c-d) Applying chain rule to compute gradient

e ac _ dc « Back-tracking from the root to write down partial

derivatives. + for branches, * for adjacent nodes
de Jd(c-d)

e @ ad = od =C * Given the actual Loss, compute gradient digits
A lot of repetitive compute
+ +1 de de Oc
e G e =3¢ 92" d-1=d Proper caching & reusing in the graph nodes

de de dc de 0dd

=c+d

9b _ac ab T ad ap

Building forward & backward compute graph

class ToyModel (nn.Module):
def __init__(self):
supexr(ToyModel, self).__init__()
self.netl = torch.nn.Linear(10, 10).to('cuda:@"')
elf.relu = torch.nn.RelLU()
elf.net2 = torch.nn.Lineaxr (10, 5).to('cuda:1"')

def forward(s=1f, x):

x = self.relu(self.netl(x.to('cuda:0')))
return net2(x.to('cuda:1'))

Model definition

Compute

graph
builder

Forward
computation
graph

Backward
computation

graph

Back propagation for LSTM

* Long-short term memory (LSTM)

ft — O'g (Wf X Xt + Uf X ht—l L bf)

aon
Ceq \ﬁ Iy = Og (W; X x¢ + Ui X hy—q + by)
Ot = Gg (Wo X Xt + UO X ht—l ¥ bO)

C,t = O¢ (WC X Xt + UC X ht—l + bC)

_ .
Ce = ftCt—1 t it ¢

hy = ot - g (ct)

* Derive the back-prop formulations for all parameters

* |[nstructor’s experience 10 years back:
* 1 full page of equations, 30~40 steps
* Implementing on GPU, extremely hard to debug

How about very large neural networks?

* We need
* Automatic computation of gradients
* Optimization with proper caching and compute node reuse

AN ——
! \ /
i ! \ i \
i ' '
' i i
1 1 h 1
| H i
i1 y
i

Quiz : back propagation for MLP

* MLP is a simple DNN, where a single perceptron is defined as:

y=oc(W - -x+b)
* A 2-layer perceptron for univariate regression with [, loss:

z=oc(W - -u+b>b) hint: ' (x) = a(x)(1 — a(x))
u=oclV-x+b>b)

derive gradients for W and V.

Computational graph construction by step

Construct the compute graph for y = softmax(W - x) with cross entropy loss
1. Construct forward graph

y
matmult H softmax]——v

Computational graph construction by step

Construct the compute graph for y = softmax(W - x) with cross entropy loss

1. Construct forward graph

2. Addloss compute nodes

y
matmult]—+£ softmax }———

log

mul

cross_entropy

Computational graph construction by step

Construct the compute graph for y = softmax(W - x) with cross entropy loss

1. Construct forward graph

2. Addloss compute nodes

W _grad
4—

y cross_entropy

matmult softmax

4

{

matmult-
transpose

¥ N v
}+———{ softmax-grad }+{i log-grad]«———{ mul <}P——— 1 / batch_size

3. Construct backward graph by automatic differentiation More details in the next lecture

Computational graph construction by step

Construct the compute graph for y = softmax(W - x) with cross entropy loss
1. Construct forward graph

2. Addloss compute nodes

assign W

A

sub
A g

matmult softmax

W_grad matmult- :
[Mﬂl }——————{ transpose softmax-grad }P{ log-grad J+——{_ mul J+——— 1 / batch_size

learning rate

3. Construct backward graph by automatic differentiation
4. Update model weights

Mapping compute graph to actual runtime

* Key factors to consider:

* Graph dependency , cross_entropy
+ Parallelism & batching i —
* Driver & API
—{ softmax-grad +{ log-grad —{ ml +— 1, paten size
 CPU, GPU, TPU, FPGA, etc. -
* Each architecture has corresponding libraries and APls @ﬁ

* Optimizations:
* Operator code-gen and fusion
* Graph-level optimizations

Execution of the compute graph: data parallelism

<D

ML Model

Gradients
Aggregation

1. Partition training data into batches 2. Compute the gradients of 3. Aggregate gradients
each batch on a GPU across GPUs

Execution of the compute graph: model parallelism

« Split a model into multiple subgraphs and assign them to different devices

e

Transfer
ML Model Model intermediate
- It
Parallelism e
_I | \ devices
A s N

Training Dataset

Execution of the compute graph: pipeline parallelism

« Split a model into multiple subgraphs and assign them to different devices.
Run them by proper scheduling.

2

—

—J» cache

ML Model

Pipeline

Parallelism

> aggregate

Training Dataset

W i=w; —WIL(w) =WL—£Z VI;w)

A1

A variety of ML systems

* ML systems exist for Boosting trees, Graph neural networks etc.

* This lecture focuses on Large Generative Models (LGMs)
* Deep neural networks trained w/ Stochastic Gradient Descent (SGD)

* Post-training paradigms

Post-training paradigms

* A large trend to move from pre-training — post-training

* To *greatly™ save costs while preserving model abilities
* Reasoning T17

INTRODUCING €. 4

.
* Labeling: text —» Col
Standard Prompting Chain-of-Thought Prompting
et ~, D ~
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of ‘ o SN
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many i = "7'?’ ‘ de-epseek
tennis balls does he have now? tennis balls does he have now? b =
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
K j do they have? /
Model Output
A: The answer is 27. x A: The cafeteria had 23 apples originally. They used

20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3+6 =9. The
\e_answer is9.

Post-training paradigms

* A large trend to move from pre-training — post-training
* To *greatly™ save costs while preserving model abilities
* Reasoning T17

* Labeling: text —» Col

deepseek

* Compute: modularized training/inference
e Distillation, reward models, SFT, RL
* Agents, RAGs, workflows

Compute graph (again) on a coarse granularity

* Example task: give me a 7B reasoning model specialized in healthcare

* DeepSeek-R1 671B too big & expensive

* | don’t care about astrophysics or Shakespeare

Col dataset

SFT Qwen-7B-
reasoning

RL Qwen-7B-
] reasoning+

Preference labels

DeepSeek- Distill
R1671B A -
RAG
Healthcare

knowledge base

7‘
Reward

model(s)

* System designs & optimizations : more details later in this course.

Compute graph (again) on a coarse granularity

* Example task: solving a task using a multi-agent framework
* Collaborative, reflections, multi-round invocations of LLMs
/_ sor \

Single Agent Network

S -%- o/’i\[]

Hierarchical Custom

A |8
SR LU0
000 oo 0

* System designs & optimizations : more details later in this course.

Course structure

Lecture
date

Aug 13

Aug 20
Aug 27

Sep 03

Sep 10

Sep 17

Sep 24
Oct 01

Oct 08

Oct 15

Oct 22

Oct 29

Nov 05

Nov 12

Plan

Week 1: Introduction
[slides]

Week 2: MLsys foundations
Week 3: Automatic differentiation
Week 4: Hardware acceleration

Week 5: Parallelism and training
techniques

Week 6: Transformers, Attention and
Optimizations

Recess week
Week 7: Serving LLMs

Week 8: Post-training techniques

Week 9: Multi-Modal Models

Week 10: Application Systems: Al Agents,

RAGs, Deep Research and beyond
Week 11: LLM Safety

Week 12: Cloud systems for Al

Week 13: Project presentations

Lecturer
if not Yao

Note

[HW1 Release]

HW1 due

[HW2 Release]

HW2 due, Project
proposal due

[HW3 Release]

HW3 due, Mid-term
project report due

[HW4 Release]

HW4 due, final project
report due

Fine-granularity techniques & optimizations

Systems

Coarse-granularity techniques & optimizations

Misc

Systems

Summary: core modules in MLsys

* Graph optimization e Storage & caching
* Model specific technologies Data preparation & quality

* Training / Tuning:
’ ‘ efficiency & scalability

* Resource & job scheduling * Inference/ Serving:
* Operation & tuning
* Multiplexing

| Runtime compute | | TenaeTeEn

latency & throughput

* Kernel optimization
 Code generation
* New hardware

A SQL query plan

Archaeology o Lt S

SELECT Top Mested Loops Tz :IE Spool Segment [nda-c Scan
{Inner Join) {Lazy Spaal)
Data & ML systems share many common ideas ase as% 00%
EEIEH @‘ E0,001 §§§4 E0,001 |§1
Mest=d Loops Str?:;.ﬂ.ggragata TLEEII!‘:I-IES'_-':-::-:iI
. . {Inner Join) ogregate) {)
Compute graph is an old thing - a
0.0 %
 SQL query/ execution plan e [

Table Spoal
(Lazy Spoal)

Difference in programming model
* Functional: high level language > intermedia representation > optimizer > execution plan
* Declarative: same, but a much larger search space
* Graph-based query optimization is an old thing as well

Lots of idea can often reuse! Come to my other database course.

Originate 1970s 2010s
Programming model Declarative Functional
Graph-based Operator fusion, Operator fusion,
optimization reordering, reordering...

Parallelism Data, pipeline Data, tensor, pipeline

Logistics
* Homework 1 is out

* Overview of Homework 2-4
* HW2: back propagation and autograd
« HW3: framework & LLM inference
* HW4: LLM serving & RAG

Reading for the next lecture

* How to read a paper

* TensorFlow: A System for Large-Scale Machine Learning
OSDI 2016

* QA /interaction in class

http://ccr.sigcomm.org/online/files/p83-keshavA.pdf
http://ccr.sigcomm.org/online/files/p83-keshavA.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) MLsys Foundations
	Slide 2: ML Systems Overview
	Slide 3: Models
	Slide 4: Model definitions
	Slide 5: A variety of ML systems
	Slide 6: A variety of ML systems
	Slide 7: Algorithmic workflows: recap
	Slide 8: Algorithmic workflows: recap
	Slide 9: Algorithmic workflows: recap
	Slide 10: Algorithmic workflows: recap
	Slide 11: Back propagation by example
	Slide 12: Back propagation by example
	Slide 13: Back propagation by example
	Slide 14: Building forward & backward compute graph
	Slide 15: Back propagation for LSTM
	Slide 16: How about very large neural networks?
	Slide 17: Quiz : back propagation for MLP
	Slide 18: Computational graph construction by step
	Slide 19: Computational graph construction by step
	Slide 20: Computational graph construction by step
	Slide 21: Computational graph construction by step
	Slide 22: Mapping compute graph to actual runtime
	Slide 23: Execution of the compute graph: data parallelism
	Slide 24: Execution of the compute graph: model parallelism
	Slide 25: Execution of the compute graph: pipeline parallelism
	Slide 26: A variety of ML systems
	Slide 27: Post-training paradigms
	Slide 28: Post-training paradigms
	Slide 29: Compute graph (again) on a coarse granularity
	Slide 30: Compute graph (again) on a coarse granularity
	Slide 31: Course structure
	Slide 32: Summary: core modules in MLsys
	Slide 33: Archaeology
	Slide 34: Logistics
	Slide 35: Reading for the next lecture

