
CS6216 Advanced Topics in Machine Learning (Systems)

Automatic Differentiation

Yao LU
27 Aug 2025

National University of Singapore
School of Computing

Paper reading & discussion

TensorFlow: A System for Large-Scale Machine Learning OSDI 2016

• What are TensorFlow's core design principles? What are the pros & cons of using dataflow graphs?

• How to evaluate the proposed system?

Discuss in groups & submit your answers with names.

pe.app/yaolu1

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://pe.app/yaolu1
https://pe.app/yaolu1

Recap: algorithmic workflows

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce partial
gradients / errors for each trainable weight

3. Weight update: use the loss value to update model weights

Model inputs Prediction

𝑤 ← 𝑤 − 𝜂∇w L w

Label
Loss

Ways to compute gradients

• Numerical differentiation

• Symbolic differentiation

• Forward mode automatic differentiation

• Backward mode automatic differentiation

Numerical Differentiation

• Directly compute the partial gradient by symbolic definitions
𝜕𝑓 𝜃

𝜕𝜃𝑖
= lim

𝜖→0

𝑓 𝜃 + 𝜖𝑒𝑖 − 𝑓 𝜃

𝜖

 ⇒Hard to work correctly due to precision / numerical errors

Recap: compute graph

• Each node represents an (intermediate) value in the

computation. Edges present input/output relations.

Forward propagation steps

𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 =

𝑣4 =

𝑣5 =

𝑣6 =

𝑣7 =

𝑦 =

Recap: compute graph

• Each node represents an (intermediate) value in the

computation. Edges present input/output relations.

Forward propagation steps

𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Forward Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

• Tweak the input and watch how the output
changes

- How much do you have?
- Guess

- $100?
- Too much

- $50?
- Too few

Forward Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑣𝑖

𝜕𝑥1
,

we can compute Δ𝑣𝑖 by tweaking the inputs and perform

forward propagation:

Δ𝑣1 = 1

Δ𝑣2 = 0

Δ𝑣3 =

Δ𝑣4 =

Δ𝑣5 =

Δ𝑣6 =

Δ𝑣7 =

𝜕𝑦

𝜕𝑥1
=

Forward Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑣𝑖

𝜕𝑥1
,

we can compute Δ𝑣𝑖 by tweaking the inputs and perform

forward propagation:

Δ𝑣1 = 1

Δ𝑣2 = 0

Δ𝑣3 =
Δ𝑣1

𝑣1
= 0.5

Δ𝑣4 = Δ𝑣1𝑣2 + Δ𝑣2𝑣1 = 1 × 5 + 0 × 2 = 5

Δ𝑣5 = Δ𝑣2 cos 𝑣2 = 0 × cos 5 = 0

Δ𝑣6 = Δ𝑣3 + Δ𝑣4 = 0.5 + 5 = 5.5

Δ𝑣7 = Δ𝑣6 − Δ𝑣5 = 5.5 − 0 = 5.5

𝜕𝑦

𝜕𝑥1
= Δ𝑣7 = 5.5

Forward Mode Automatic Differentiation (AutoDiff)

• However, each input 𝑥𝑖 needs a whole forward propagation.
• Pros & Cons?
 ⇒Very expensive

 ⇒Hard to set proper Δ𝑥, know Δ𝑦 only

 ⇒Often used to check the correctness of coding

Symbolic Differentiation

• Use the model formula to derive gradients by sum, product and chain rules

•
𝜕 𝑓 𝜃 +𝑔 𝜃

𝜕 𝜃
=

•
𝜕 𝑓 𝜃 𝑔 𝜃

𝜕 𝜃
=

•
𝜕𝑓(𝑔 𝜃)

𝜕 𝜃
=

 ⇒ Lots of repeated compute: 𝑓 𝜃 = ς𝑖=1
𝑛 𝜃𝑖 ,

𝑓 𝜃

𝜕𝜃𝑘
= ς𝑗≠𝑘

𝑛 𝜃𝑗

Symbolic Differentiation

• Use the model formula to derive gradients by sum, product and chain rules

•
𝜕 𝑓 𝜃 +𝑔 𝜃

𝜕 𝜃
=

𝜕𝑓 𝜃

𝜕𝜃
+

𝜕𝑔 𝜃

𝜕𝜃

•
𝜕 𝑓 𝜃 𝑔 𝜃

𝜕 𝜃
= 𝑔(𝜃) ×

𝜕𝑓 𝜃

𝜕𝜃
+ 𝑓(𝜃) ×

𝜕𝑔 𝜃

𝜕𝜃

•
𝜕𝑓(𝑔 𝜃)

𝜕 𝜃
=

𝜕𝑓 𝑔(𝜃)

𝜕𝑔(𝜃)
×

𝜕𝑔 𝜃

𝜕𝜃

 ⇒ Lots of repeated compute: 𝑓 𝜃 = ς𝑖=1
𝑛 𝜃𝑖 ,

𝑓 𝜃

𝜕𝜃𝑘
= ς𝑗≠𝑘

𝑛 𝜃𝑗

Reverse Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖
,

we can compute Δ𝑣𝑖 in a reverse order of the graph

Δ𝑣7 =
𝜕𝑦

𝜕𝑣7
= 1

Δ𝑣6 =

Δ𝑣5 =

Δ𝑣4 =

Δ𝑣3 =

Δ𝑣2 =

Δ𝑣1 =

Reverse Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖
,

we can compute Δ𝑣𝑖 in a reverse order of the graph

Δ𝑣7 =
𝜕𝑦

𝜕𝑣7
= 1

Δ𝑣6 = Δ𝑣7 ×
𝜕𝑣7

𝜕𝑣6
= Δ𝑣7 × 1 = 1

Δ𝑣5 = Δ𝑣7 ×
𝜕𝑣7

𝜕𝑣5
= Δ𝑣7 × −1 = −1

Δ𝑣4 = Δ𝑣6 ×
𝜕𝑣6

𝜕𝑣4
= Δ𝑣6 × 1 = 1

Δ𝑣3 = Δ𝑣6 ×
𝜕𝑣6

𝜕𝑣3
= Δ𝑣6 × 1 = 1

Δ𝑣2 = Δ𝑣5 ×
𝜕𝑣5

𝜕𝑣2
+ Δ𝑣4 ×

𝜕𝑣4

𝜕𝑣2
= Δ𝑣5 × cos 𝑣2 + Δ𝑣4 × 𝑣1 = − cos 5 + 2

Δ𝑣1 = Δ𝑣4 ×
𝜕𝑣4

𝜕𝑣1
+ Δ𝑣3 ×

𝜕𝑣3

𝜕𝑣1
= Δ𝑣4 × 𝑣2 + Δ𝑣3 ×

1

𝑣1
= 5 +

1

2
= 5.5

Derivation for branches
• In reverse model AutoDiff, gradients are summed up from branches

• Define partial adjoint Δ𝑣𝑖→𝑗 = Δ𝑣𝑗 ×
𝜕𝑣𝑗

𝜕𝑣𝑖
 for each pair of adjacent node 𝑖, 𝑗

• Then for a node with multiple outbound pathways,

Δ𝑣𝑖 = ෍

𝑗∈adj(𝑖)

Δ𝑣𝑖→𝑗

 We can compute partial adjoints, and then sum them together.

Δ𝑣1 =
𝜕𝑦

𝜕𝑣1
=

𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣2
×

𝜕𝑣2

𝜕𝑣1
+

𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣3
×

𝜕𝑣3

𝜕𝑣1

= Δ𝑣2 ×
𝜕𝑣2

𝜕𝑣1
+ Δ𝑣3 ×

𝜕𝑣3

𝜕𝑣1

Reverse Model AutoDiff Algorithm

Reverse Model AutoDiff Algorithm

Key is to compute the adjoint values for each node and construct the graph on the fly.

out: dictionary to record a list of partial adjoints for each node

Propagates partial adjoint to its input node

Reverse Model AutoDiff Algorithm

Reverse Model AutoDiff Algorithm

id = identity function

Reverse Model AutoDiff Algorithm

id = identity function

Reverse Model AutoDiff Algorithm

id = identity function

Reverse Model AutoDiff Algorithm

id = identity function

Reverse Model AutoDiff Algorithm

id = identity function

Compute in-place vs. Reverse Model AutoDiff
Compute in-place Reverse mode AutoDiff
 w/ compute graph

• Run backprop on the forward graph

• Used in earlier frameworks (caffe etc.)

• Construct separate graph nodes for adjoints

• Used in modern frameworks (Pytorch etc.)

Ways to compute gradients

Pros Cons

Numerical differentiation

Symbolic differentiation

Forward model AutoDiff

Backward model AutoDiff

Ways to compute gradients

Pros Cons

Numerical differentiation

Intuitive & easy to compute

Numerical error

Symbolic differentiation Repeated compute

Forward model AutoDiff Repeated compute

Backward model AutoDiff Scalable & saves compute Memory consumption

Paper reading & discussion

Why Deep Learning Models Run Faster on GPUs: A Brief Introduction to CUDA Programming

NVIDIA Blackwell Architecture Technical Brief - Built for the Age of AI Reasoning

https://medium.com/data-science/why-deep-learning-models-run-faster-on-gpus-a-brief-introduction-to-cuda-programming-035272906d66
https://resources.nvidia.com/en-us-blackwell-architecture?ncid=no-ncid
https://resources.nvidia.com/en-us-blackwell-architecture?ncid=no-ncid
https://resources.nvidia.com/en-us-blackwell-architecture?ncid=no-ncid

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) Automatic Differentiation
	Slide 2: Paper reading & discussion
	Slide 3: Recap: algorithmic workflows
	Slide 4: Ways to compute gradients
	Slide 5: Numerical Differentiation
	Slide 6: Recap: compute graph
	Slide 7: Recap: compute graph
	Slide 8: Forward Mode Automatic Differentiation (AutoDiff)
	Slide 9: Forward Mode Automatic Differentiation (AutoDiff)
	Slide 10: Forward Mode Automatic Differentiation (AutoDiff)
	Slide 11: Forward Mode Automatic Differentiation (AutoDiff)
	Slide 12: Symbolic Differentiation
	Slide 13: Symbolic Differentiation
	Slide 14: Reverse Mode Automatic Differentiation (AutoDiff)
	Slide 15: Reverse Mode Automatic Differentiation (AutoDiff)
	Slide 16: Derivation for branches
	Slide 17: Reverse Model AutoDiff Algorithm
	Slide 18: Reverse Model AutoDiff Algorithm
	Slide 19: Reverse Model AutoDiff Algorithm
	Slide 20: Reverse Model AutoDiff Algorithm
	Slide 21: Reverse Model AutoDiff Algorithm
	Slide 22: Reverse Model AutoDiff Algorithm
	Slide 23: Reverse Model AutoDiff Algorithm
	Slide 24: Reverse Model AutoDiff Algorithm
	Slide 25: Compute in-place vs. Reverse Model AutoDiff
	Slide 26: Ways to compute gradients
	Slide 27: Ways to compute gradients
	Slide 28: Paper reading & discussion

