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Paper reading & discussion

TensorFlow: A System for Large-Scale Machine Learning    OSDI 2016

• What are TensorFlow's core design principles? What are the pros & cons of using dataflow graphs?

• How to evaluate the proposed system? 

Discuss in groups & submit your answers with names.

pe.app/yaolu1
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Recap: algorithmic workflows

Stochastic Gradient Descent (SGD) 

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run 
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce partial 
gradients / errors for each trainable weight

3. Weight update: use the loss value to update model weights

Model inputs Prediction

𝑤 ← 𝑤 − 𝜂∇w L w

Label
Loss



Ways to compute gradients

• Numerical differentiation

• Symbolic differentiation

• Forward mode automatic differentiation 

• Backward mode automatic differentiation



Numerical Differentiation

• Directly compute the partial gradient by symbolic definitions
𝜕𝑓 𝜃

𝜕𝜃𝑖
= lim

𝜖→0

𝑓 𝜃 + 𝜖𝑒𝑖 − 𝑓 𝜃

𝜖

 ⇒Hard to work correctly due to precision / numerical errors



Recap: compute graph

• Each node represents an (intermediate) value in the 

computation. Edges present input/output relations.

Forward propagation steps

𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 =

𝑣4 =

𝑣5 =

𝑣6 =

𝑣7 =

𝑦 =



Recap: compute graph

• Each node represents an (intermediate) value in the 

computation. Edges present input/output relations.

Forward propagation steps

𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652



Forward Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

• Tweak the input and watch how the output 
changes

- How much do you have?
- Guess

- $100?
- Too much

- $50? 
- Too few 



Forward Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑣𝑖

𝜕𝑥1
, 

we can compute Δ𝑣𝑖 by tweaking the inputs and perform 

forward propagation:

Δ𝑣1 = 1

Δ𝑣2 = 0

Δ𝑣3 =

Δ𝑣4 =

Δ𝑣5 =

Δ𝑣6 =

Δ𝑣7 =

𝜕𝑦

𝜕𝑥1
=



Forward Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑣𝑖

𝜕𝑥1
, 

we can compute Δ𝑣𝑖 by tweaking the inputs and perform 

forward propagation:

Δ𝑣1 = 1

Δ𝑣2 = 0

Δ𝑣3 =
Δ𝑣1

𝑣1
= 0.5

Δ𝑣4 = Δ𝑣1𝑣2 + Δ𝑣2𝑣1 = 1 × 5 + 0 × 2 = 5

Δ𝑣5 = Δ𝑣2 cos 𝑣2 = 0 × cos 5 = 0

Δ𝑣6 = Δ𝑣3 + Δ𝑣4 = 0.5 + 5 = 5.5

Δ𝑣7 = Δ𝑣6 − Δ𝑣5 = 5.5 − 0 = 5.5

𝜕𝑦

𝜕𝑥1
= Δ𝑣7 = 5.5



Forward Mode Automatic Differentiation (AutoDiff)

• However, each input 𝑥𝑖  needs a whole forward propagation. 
• Pros & Cons? 
    ⇒Very expensive 

    ⇒Hard to set proper Δ𝑥, know  Δ𝑦 only

    ⇒Often used to check the correctness of coding



Symbolic Differentiation

• Use the model formula to derive gradients by sum, product and chain rules

•
𝜕 𝑓 𝜃 +𝑔 𝜃

𝜕 𝜃
=

•
𝜕 𝑓 𝜃 𝑔 𝜃

𝜕 𝜃
=

•
𝜕𝑓(𝑔 𝜃 )

𝜕 𝜃
=

    ⇒ Lots of repeated compute: 𝑓 𝜃 = ς𝑖=1
𝑛 𝜃𝑖 ,

𝑓 𝜃

𝜕𝜃𝑘
= ς𝑗≠𝑘

𝑛 𝜃𝑗



Symbolic Differentiation

• Use the model formula to derive gradients by sum, product and chain rules

•
𝜕 𝑓 𝜃 +𝑔 𝜃

𝜕 𝜃
=

𝜕𝑓 𝜃

𝜕𝜃
+

𝜕𝑔 𝜃

𝜕𝜃

•
𝜕 𝑓 𝜃 𝑔 𝜃

𝜕 𝜃
= 𝑔(𝜃) ×

𝜕𝑓 𝜃

𝜕𝜃
+ 𝑓(𝜃) ×

𝜕𝑔 𝜃

𝜕𝜃

•
𝜕𝑓(𝑔 𝜃 )

𝜕 𝜃
=

𝜕𝑓 𝑔(𝜃)

𝜕𝑔(𝜃)
×

𝜕𝑔 𝜃

𝜕𝜃

    ⇒ Lots of repeated compute: 𝑓 𝜃 = ς𝑖=1
𝑛 𝜃𝑖 ,

𝑓 𝜃

𝜕𝜃𝑘
= ς𝑗≠𝑘

𝑛 𝜃𝑗



Reverse Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖
, 

we can compute Δ𝑣𝑖 in a reverse order of the graph

Δ𝑣7 =
𝜕𝑦

𝜕𝑣7
= 1

Δ𝑣6 =

Δ𝑣5 =

Δ𝑣4 =

Δ𝑣3 =

Δ𝑣2 =

Δ𝑣1 =



Reverse Mode Automatic Differentiation (AutoDiff)

Forward propagation steps
𝑣1 = 𝑥1 = 2

𝑣2 = 𝑥2 = 5

𝑣3 = ln 𝑣1 = ln 2 = 0.692

𝑣4 = 𝑣1 × 𝑣2 = 10

𝑣5 = sin 𝑣2 = sin 5 = −0.959

𝑣6 = 𝑣3 + 𝑣4 = 10.693

𝑣7 = 𝑣6 − 𝑣5 = 11.652

𝑦 = 𝑣7 = 11.652

Let Δ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖
, 

we can compute Δ𝑣𝑖 in a reverse order of the graph

Δ𝑣7 =
𝜕𝑦

𝜕𝑣7
= 1

Δ𝑣6 = Δ𝑣7 ×
𝜕𝑣7

𝜕𝑣6
= Δ𝑣7 × 1 = 1

Δ𝑣5 = Δ𝑣7 ×
𝜕𝑣7

𝜕𝑣5
= Δ𝑣7 × −1 = −1

Δ𝑣4 = Δ𝑣6 ×
𝜕𝑣6

𝜕𝑣4
= Δ𝑣6 × 1 = 1

Δ𝑣3 = Δ𝑣6 ×
𝜕𝑣6

𝜕𝑣3
= Δ𝑣6 × 1 = 1

Δ𝑣2 = Δ𝑣5 ×
𝜕𝑣5

𝜕𝑣2
+ Δ𝑣4 ×

𝜕𝑣4

𝜕𝑣2
= Δ𝑣5 × cos 𝑣2 + Δ𝑣4 × 𝑣1 = − cos 5 + 2

Δ𝑣1 = Δ𝑣4 ×
𝜕𝑣4

𝜕𝑣1
+ Δ𝑣3 ×

𝜕𝑣3

𝜕𝑣1
= Δ𝑣4 × 𝑣2 + Δ𝑣3 ×

1

𝑣1
= 5 +

1

2
= 5.5



Derivation for branches
• In reverse model AutoDiff, gradients are summed up from branches

   

• Define partial adjoint Δ𝑣𝑖→𝑗 = Δ𝑣𝑗 ×
𝜕𝑣𝑗

𝜕𝑣𝑖
 for each pair of adjacent node 𝑖, 𝑗

• Then for a node with multiple outbound pathways, 

Δ𝑣𝑖 = ෍

𝑗∈adj(𝑖)

Δ𝑣𝑖→𝑗

   We can compute partial adjoints, and then sum them together. 

Δ𝑣1 =
𝜕𝑦

𝜕𝑣1
=

𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣2
×

𝜕𝑣2

𝜕𝑣1
+

𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣3
×

𝜕𝑣3

𝜕𝑣1

= Δ𝑣2 ×
𝜕𝑣2

𝜕𝑣1
+ Δ𝑣3 ×

𝜕𝑣3

𝜕𝑣1



Reverse Model AutoDiff Algorithm



Reverse Model AutoDiff Algorithm

Key is to compute the adjoint values for each node and construct the graph on the fly.

out: dictionary to record a list of partial adjoints for each node

Propagates partial adjoint to its input node



Reverse Model AutoDiff Algorithm



Reverse Model AutoDiff Algorithm

id = identity function



Reverse Model AutoDiff Algorithm

id = identity function



Reverse Model AutoDiff Algorithm

id = identity function



Reverse Model AutoDiff Algorithm

id = identity function



Reverse Model AutoDiff Algorithm

id = identity function



Compute in-place vs. Reverse Model AutoDiff
Compute in-place                                Reverse mode AutoDiff 
                                                                                w/ compute graph

• Run backprop on the forward graph

• Used in earlier frameworks (caffe etc.)

• Construct separate graph nodes for adjoints

• Used in modern frameworks (Pytorch etc.)



Ways to compute gradients

Pros Cons

Numerical differentiation

Symbolic differentiation

Forward model AutoDiff

Backward model AutoDiff



Ways to compute gradients

Pros Cons

Numerical differentiation

Intuitive & easy to compute

Numerical error

Symbolic differentiation Repeated compute

Forward model AutoDiff Repeated compute

Backward model AutoDiff Scalable & saves compute Memory consumption



Paper reading & discussion

Why Deep Learning Models Run Faster on GPUs: A Brief Introduction to CUDA Programming

NVIDIA Blackwell Architecture Technical Brief - Built for the Age of AI Reasoning

https://medium.com/data-science/why-deep-learning-models-run-faster-on-gpus-a-brief-introduction-to-cuda-programming-035272906d66
https://resources.nvidia.com/en-us-blackwell-architecture?ncid=no-ncid
https://resources.nvidia.com/en-us-blackwell-architecture?ncid=no-ncid
https://resources.nvidia.com/en-us-blackwell-architecture?ncid=no-ncid
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