CS6216 Advanced Topics in Machine Learning (Systems)

Automatic Differentiation

Yao LU 27 Aug 2025

National University of Singapore School of Computing

Paper reading & discussion

TensorFlow: A System for Large-Scale Machine Learning OSDI 2016

- What are TensorFlow's core design principles? What are the pros & cons of using dataflow graphs?
- How to evaluate the proposed system?

Discuss in groups & submit your answers with names.

pe.app/yaolu1

Recap: algorithmic workflows

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- Backward propagation: run the model in reverse to produce partial gradients / errors for each trainable weight
- 3. Weight update: use the loss value to update model weights $w \leftarrow w \eta \nabla_{\!\! w} L(w)$

Ways to compute gradients

- Numerical differentiation
- Symbolic differentiation
- Forward mode automatic differentiation
- Backward mode automatic differentiation

Numerical Differentiation

• Directly compute the partial gradient by symbolic definitions

$$\frac{\partial f(\theta)}{\partial \theta_i} = \lim_{\epsilon \to 0} \frac{f(\theta + \epsilon e_i) - f(\theta)}{\epsilon}$$

⇒Hard to work correctly due to precision / numerical errors

Recap: compute graph

$$y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin x_2$$

 Each node represents an (intermediate) value in the computation. Edges present input/output relations.

Forward propagation steps

$$v_1 = x_1 = 2$$

$$v_2 = x_2 = 5$$

$$v_3 =$$

$$v_4 =$$

$$v_5 =$$

$$v_6 =$$

$$v_7 =$$

$$y =$$

Recap: compute graph

$$y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin x_2$$

 Each node represents an (intermediate) value in the computation. Edges present input/output relations.

Forward propagation steps

$$v_1 = x_1 = 2$$

$$v_2 = x_2 = 5$$

$$v_3 = \ln v_1 = \ln 2 = 0.692$$

$$v_4 = v_1 \times v_2 = 10$$

$$v_5 = \sin v_2 = \sin 5 = -0.959$$

$$v_6 = v_3 + v_4 = 10.693$$

$$v_7 = v_6 - v_5 = 11.652$$

$$y = v_7 = 11.652$$

$$y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin x_2$$

Forward propagation steps

$$v_1 = x_1 = 2$$

 $v_2 = x_2 = 5$
 $v_3 = \ln v_1 = \ln 2 = 0.692$
 $v_4 = v_1 \times v_2 = 10$
 $v_5 = \sin v_2 = \sin 5 = -0.959$
 $v_6 = v_3 + v_4 = 10.693$
 $v_7 = v_6 - v_5 = 11.652$
 $y = v_7 = 11.652$

Tweak the input and watch how the output changes

- How much do you have?

\$100?

- Too much

\$50?

Too few

Guess

$$y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin x_2$$

Forward propagation steps

$$v_1 = x_1 = 2$$

 $v_2 = x_2 = 5$
 $v_3 = \ln v_1 = \ln 2 = 0.692$
 $v_4 = v_1 \times v_2 = 10$
 $v_5 = \sin v_2 = \sin 5 = -0.959$
 $v_6 = v_3 + v_4 = 10.693$
 $v_7 = v_6 - v_5 = 11.652$
 $y = v_7 = 11.652$

Let
$$\Delta v_i = \frac{\partial v_i}{\partial x_1}$$
,

we can compute Δv_i by tweaking the inputs and perform forward propagation:

$$\Delta v_1 = 1$$

$$\Delta v_2 = 0$$

$$\Delta v_3 =$$

$$\Delta v_4 =$$

$$\Delta v_5 =$$

$$\Delta v_6 =$$

$$\Delta v_7 =$$

$$\frac{\partial y}{\partial x_1} =$$

$$y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin x_2$$

Forward propagation steps

$$v_1 = x_1 = 2$$

 $v_2 = x_2 = 5$
 $v_3 = \ln v_1 = \ln 2 = 0.692$
 $v_4 = v_1 \times v_2 = 10$
 $v_5 = \sin v_2 = \sin 5 = -0.959$
 $v_6 = v_3 + v_4 = 10.693$
 $v_7 = v_6 - v_5 = 11.652$
 $y = v_7 = 11.652$

Let
$$\Delta v_i = \frac{\partial v_i}{\partial x_1}$$
,

we can compute Δv_i by tweaking the inputs and perform forward propagation:

$$\Delta v_1 = 1$$

$$\Delta v_2 = 0$$

$$\Delta v_3 = \frac{\Delta v_1}{v_1} = 0.5$$

$$\Delta v_4 = \Delta v_1 v_2 + \Delta v_2 v_1 = 1 \times 5 + 0 \times 2 = 5$$

$$\Delta v_5 = \Delta v_2 \cos v_2 = 0 \times \cos 5 = 0$$

$$\Delta v_6 = \Delta v_3 + \Delta v_4 = 0.5 + 5 = 5.5$$

$$\Delta v_7 = \Delta v_6 - \Delta v_5 = 5.5 - 0 = 5.5$$

$$\frac{\partial y}{\partial x_1} = \Delta v_7 = 5.5$$

- However, each input x_i needs a whole forward propagation.
- Pros & Cons?
 - ⇒Very expensive
 - \Rightarrow Hard to set proper Δx , know Δy only
 - ⇒Often used to check the correctness of coding

Symbolic Differentiation

• Use the model formula to derive gradients by sum, product and chain rules

•
$$\frac{\partial (f(\theta) + g(\theta))}{\partial (\theta)} =$$

•
$$\frac{\partial (f(\theta)g(\theta))}{\partial (\theta)} =$$

•
$$\frac{\partial f(g(\theta))}{\partial(\theta)} =$$

 \Rightarrow Lots of repeated compute: $f(\theta) = \prod_{i=1}^n \theta_i$, $\frac{f(\theta)}{\partial \theta_k} = \prod_{j \neq k}^n \theta_j$

Symbolic Differentiation

• Use the model formula to derive gradients by sum, product and chain rules

•
$$\frac{\partial (f(\theta) + g(\theta))}{\partial (\theta)} = \frac{\partial f(\theta)}{\partial \theta} + \frac{\partial g(\theta)}{\partial \theta}$$

•
$$\frac{\partial (f(\theta)g(\theta))}{\partial (\theta)} = g(\theta) \times \frac{\partial f(\theta)}{\partial \theta} + f(\theta) \times \frac{\partial g(\theta)}{\partial \theta}$$

•
$$\frac{\partial f(g(\theta))}{\partial(\theta)} = \frac{\partial f(g(\theta))}{\partial g(\theta)} \times \frac{\partial g(\theta)}{\partial \theta}$$

 \Rightarrow Lots of repeated compute: $f(\theta) = \prod_{i=1}^n \theta_i$, $\frac{f(\theta)}{\partial \theta_k} = \prod_{j \neq k}^n \theta_j$

Reverse Mode Automatic Differentiation (AutoDiff)

$$y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin x_2$$

Let
$$\Delta v_i = \frac{\partial y}{\partial v_i}$$
,

we can compute Δv_i in a reverse order of the graph

$$\Delta v_7 = \frac{\partial y}{\partial v_7} = 1$$

$$\Delta v_6 =$$

$$\Delta v_5 =$$

Forward propagation steps

$$v_1 = x_1 = 2$$

 $v_2 = x_2 = 5$
 $v_3 = \ln v_1 = \ln 2 = 0.692$
 $v_4 = v_1 \times v_2 = 10$
 $v_5 = \sin v_2 = \sin 5 = -0.959$
 $v_6 = v_3 + v_4 = 10.693$
 $v_7 = v_6 - v_5 = 11.652$
 $y = v_7 = 11.652$

$$\Delta v_4 =$$

$$\Delta v_3 =$$

$$\Delta v_2 =$$

$$\Delta v_1 =$$

Reverse Mode Automatic Differentiation (AutoDiff)

$$y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin x_2$$

Forward propagation steps

$$v_1 = x_1 = 2$$

 $v_2 = x_2 = 5$
 $v_3 = \ln v_1 = \ln 2 = 0.692$
 $v_4 = v_1 \times v_2 = 10$
 $v_5 = \sin v_2 = \sin 5 = -0.959$
 $v_6 = v_3 + v_4 = 10.693$
 $v_7 = v_6 - v_5 = 11.652$
 $v_7 = v_7 = 11.652$

Let
$$\Delta v_i = \frac{\partial y}{\partial v_i}$$
,

we can compute Δv_i in a reverse order of the graph

$$\Delta v_7 = \frac{\partial y}{\partial v_7} = 1$$

$$\Delta v_6 = \Delta v_7 \times \frac{\partial v_7}{\partial v_6} = \Delta v_7 \times 1 = 1$$

$$\Delta v_5 = \Delta v_7 \times \frac{\partial v_7}{\partial v_5} = \Delta v_7 \times (-1) = -1$$

$$\Delta v_4 = \Delta v_6 \times \frac{\partial v_6}{\partial v_4} = \Delta v_6 \times 1 = 1$$

$$\Delta v_3 = \Delta v_6 \times \frac{\partial v_6}{\partial v_3} = \Delta v_6 \times 1 = 1$$

$$\Delta v_2 = \Delta v_5 \times \frac{\partial v_5}{\partial v_2} + \Delta v_4 \times \frac{\partial v_4}{\partial v_2} = \Delta v_5 \times \cos v_2 + \Delta v_4 \times v_1 = -\cos 5 + 2$$

$$\Delta v_1 = \Delta v_4 \times \frac{\partial v_4}{\partial v_1} + \Delta v_3 \times \frac{\partial v_3}{\partial v_1} = \Delta v_4 \times v_2 + \Delta v_3 \times \frac{1}{v_1} = 5 + \frac{1}{2} = 5.5$$

Derivation for branches

• In reverse model AutoDiff, gradients are summed up from branches

- Define partial adjoint $\Delta v_{i \to j} = \Delta v_j \times \frac{\partial v_j}{\partial v_i}$ for each pair of adjacent node i, j
- Then for a node with multiple outbound pathways,

$$\Delta v_i = \sum_{j \in \mathrm{adj}(i)} \Delta v_{i \to j}$$

We can compute partial adjoints, and then sum them together.

Key is to compute the adjoint values for each node and construct the graph on the fly.


```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):

\Delta v_i = \sum_j \Delta v_{i \to j} = \text{sum}(\text{node_to_grad}[i])
    for k \in inputs(i):
        compute \Delta v_{k \to i} = \Delta v_i \frac{\partial v_i}{\partial v_k}
        append \Delta v_{k \to i} to node_to_grad[k]
        return adjoint of input \Delta v_{input}
```

```
i=4 node_to_grad: { 4: [\Delta v_4] }
```



```
i=4 node_to_grad: { 2: [\![\Delta v_{2 \to 4}]\!] 3: [\![\Delta v_{3}]\!] 4: [\![\Delta v_{4}]\!] }
```



```
i=3 node_to_grad: { 2: [\Delta v_{2\rightarrow 4}, \Delta v_{2\rightarrow 3}] 3: [\Delta v_3] 4: [\Delta v_4] }
```



```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):

\Delta v_i = \sum_j \Delta v_{i \to j} = \text{sum}(\text{node_to_grad}[i])
    for k \in inputs(i):
        compute \Delta v_{k \to i} = \Delta v_i \frac{\partial v_i}{\partial v_k}
        append \Delta v_{k \to i} to node_to_grad[k]
        return adjoint of input \Delta v_{input}
```

```
i=3 node_to_grad: { 2: [\Delta v_{2\rightarrow 4}, \Delta v_{2\rightarrow 3}] 3: [\Delta v_3] 4: [\Delta v_4] }
```



```
i=2 node_to_grad: { 
 1: [\Delta v_1] 
 2: [\Delta v_{2\rightarrow 4}, \Delta v_{2\rightarrow 3}] 
 3: [\Delta v_3] 
 4: [\Delta \overline{v_4}] }
```


Compute in-place vs. Reverse Model AutoDiff

Compute in-place

- Run backprop on the forward graph
- Used in earlier frameworks (caffe etc.)

Reverse mode AutoDiff w/ compute graph

- Construct separate graph nodes for adjoints
- Used in modern frameworks (Pytorch etc.)

Ways to compute gradients

	Pros	Cons
Numerical differentiation		
Symbolic differentiation		
Forward model AutoDiff		
Backward model AutoDiff		

Ways to compute gradients

	Pros	Cons
Numerical differentiation	Intuitive & easy to compute	Numerical error
Symbolic differentiation		Repeated compute
Forward model AutoDiff		Repeated compute
Backward model AutoDiff	Scalable & saves compute	Memory consumption

Paper reading & discussion

Why Deep Learning Models Run Faster on GPUs: A Brief Introduction to CUDA Programming

NVIDIA Blackwell Architecture Technical Brief - Built for the Age of Al Reasoning