CS6216 Advanced Topics in Machine Learning (Systems)

Parallelism and Training Techniques

Yao LU
10 Sep 2025

National University of Singapore
School of Computing

Recap: Mapping compute graph to actual runtime

* Key factors to consider:

* Graph dependency , ross._entrony
+ Parallelism & batching i .
+ Driver & API
MLt | [ortnax-grad +f log-grad —{ mil f— 1 paten size
» CPU, GPU, TPU, FPGA, etc. -
* Each architecture has corresponding libraries and APls @ﬁ

* Optimizations:
* Operator code-gen and fusion
* Graph-level optimizations

Recap: Algorithmic workflows

Stochastic Gradient Descent (SGD)
Train ML models through many iterations of 3 stages

apply model to a batch of input samples and run
calculation through operators to produce a prediction

: run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs 158 Model prediction
Initial !/ _— Gradient
weight ==
n \ /
L J
e gf%g;m VVl = VVL _VVI(W — Vvl _l/] Vvl // "l" Global cost minimum
@ Softmax n kz

_— Jmin(w)

w

Execution of the compute graph: data parallelism

<D

ML Model

Gradients

Aggregation

A
Training Dataset

W, = w —YVIUW) =w, —gz VL)

J=1

1. Partition training data into batches 2. Compute the gradients of 3. Aggregate gradients
each batch on a GPU across GPUs

Execution of the compute graph: data parallelism

<D

ML Model

Gradients
Aggregation

1. Partition training data into batches 2. Compute the gradients of 3. Aggregate gradients
each batch on a GPU across GPUs

Data parallelism: Parameter Server (OSDI14)

Parameter Servers p’=p’+Ap

Da80aa@an

Workers push gradients to
parameter servers and pull
updated parameters back

Data parallelism: Parameter Server (OSDI14)

. all workers communicate with parameter
servers for weights update; cannot scale to large numbers of workers

« Can we decentralize communication in DNN training?

Parameter Servers p’=p’ +Ap

0Ea000aan

/4l NI

Data

Data parallelism: Parameter Server (OSDI14)

. all workers communicate with parameter
servers for weights update; cannot scale to large numbers of workers

« Can we decentralize communication in DNN training?

. perform element-wise reduction across multiple devices

Ways of AllReduce

* Nalve AllReduce

* Ring AlIReduce

* Tree AllIReduce
 Butterfly AllIReduce

Naive AllReduce

Each worker can send its local gradients to all other workers
If we have N workers and each worker contains M parameters
Overall communication: N * (N-1) * M parameters

Issue: each worker communicates with all other workers; same scalability
Issue as parameter server

Worker A Worker B

Worker C Worker D

OoooD

Ring AllReduce

« Construct a ring of N workers, divide M parameters into N slices

« Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

Worker D Worker B

dy | dp | d3 by | by

Worker C

Ring AllReduce

« Construct a ring of N workers, divide M parameters into N slices

« Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

Worker C

Ring AllReduce

« Construct a ring of N workers, divide M parameters into N slices

« Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

Worker B

Worker C

I

b1+C1

Ring AllReduce

« Construct a ring of N workers, divide M parameters into N slices

« Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

 After step 1, each worker has the aggregated version of M/N parameters

Worker C

3

rp=aq;+b; +c+d;

Ring AllReduce

« Construct a ring of N workers, divide M parameters into N slices

« Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

« Step 2 (Broadcast): each worker send one slice of aggregated parameters
to the next worker; repeat N times

Worker A

o
/
f

Worker C

3

rp=aq;+b; +c+d;

Ring AllReduce

« Construct a ring of N workers, divide M parameters into N slices

« Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

« Step 2 (Broadcast): each worker send one slice of aggregated parameters
to the next worker; repeat N times

Worker A

Worker D

Worker C

ri=aq;+b; +ci+d;

Ring AllReduce

« Construct a ring of N workers, divide M parameters into N slices

« Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

« Step 2 (Broadcast): each worker send one slice of aggregated parameters
to the next worker; repeat N times
* Overall communication: 2 * M * N parameters
« Aggregation: M * N parameters
» Broadcast: M * N parameters

Tree AllReduce

e Construct a tree of N workers;

« Step 1 (Aggregation): each worker sends M parameters to its parent;
repeat log(N) times

« Step 2 (Broadcast): each worker sends M parameters to its children;

repeat log(N) times Worker 6
10)
11 ' 14
Worker 4 35 35 Worker 5
4 p 7
35 35 35,/ 35
2/ N5 1/ .6
2 B 1 6

Worker O Worker 1 Worker 2 Worker 3

Tree AllReduce

e Construct a tree of N workers;

« Step 1 (Aggregation): each worker sends M parameters to its parent;
repeat log(N) times

« Step 2 (Broadcast): each worker sends M parameters to its children;
repeat log(N) times
* Overall communication: 2 * N * M parameters
« Aggregation: M * N parameters
» Broadcast: M * N parameters

Butterfly AllReduce
"N

« IO 3 ESTS 7
/¢ -
0 o 3 7
1\ o s
ORI 3 5617
(O 3 5617

- -
. -
. .
- -
. -
- -
-

-
.
.
-
.
-
-

Butterfly AllReduce

* Repeat log(N) times:
1. Each worker sends M parameters to

its target node in the butterfly + (OMR 3 H506/7
network /+ I S

2. Each worker aggregates gradients (/. e—
locally Y/

ks
AU o s
N 3 51617
N 3567
N 351617

* Overall communication: N * M * log(N)
parameters

Comparing AllReduce methods

Parameter | Naive Ring Tree Butterfly
Server AllIReduce AllIReduce AllIReduce AllIReduce

Overall 2XNXM N2xM 2XNXM 2XNXM NXMx log N
communication

Ring AllReduce v.s. Tree AllReduce v.s. Parameter Server

Ring AllReduce:

- Best latency

« Balanced workload across workers

 More scalable since each worker Parameter Servers p”=p’+ Ap

sends 2*M parameters (independent to '...-....
the number of workers) AV/,, H

Worker A

&

Worker D Worker B Model D [:]
T T i Y15 Replicas [j C] .= (0]
10
T
M -8 é é .8
n=a b ot a;

s | 55 % s All workers send Ml parameters to
N N parameter servers and receive IVl
Each worker sends VI/N parameters per i i 1 6 parameters from servers

iteration; repeat for 2*N iterations

: Latency: M * N / bandwidth
Latency: M/N * (2*N) / bandwidth

Each worker sends VI parameters per
iteration; repeat for 2*log(N) iterations
Latency: M * 2 * log(N) / bandwidth

Large model training challenges

Bert- Turing

| Large | GPT-2 [17.2NLG | GPT-3
Parameters 0.32B 1.9B 17.2B 175B
Layers 24 48 78 96
Hidden Dimension 1024 1600 4256 12238
Relative

Computation 1X 4.7x 54x 547x
Memory Footprint 5.12GB 24GB 275GB 2800GB

NVIDIAV100 GPU memory capacity: 16G/32G Out of Memory

NVIDIA A100 GPU memory capacity: 40G/80G

Embedding

Input Embedding

¢

Input

Execution of the compute graph: tensor / model parallelism

« Split a model into multiple subgraphs and assign them to different devices

e

Transfer
ML Model Model intermediate
- It
Parallelism e
_I | \ devices
A s N

Training Dataset

I
X

Tensor model parallelism

output input parameters

 Partition parameters/gradients within a layer

GPU1 N GPU 1 N
J J
GPU 2 0 GPU 2 N
) . i]) H
) J

Tensor Model Parallelism (reduce output)

Tensor Model Parallelism (partition output)
y=y1l+y2

Comparing data and tensor model parallelism

out

GPU 1

GPU 2

o

Data parallelism

Cin

Forward Backward Gradients
Processing Propagation Sync

0 0 O(Cout * Cin)

X W Communication Cost of Data Parallelism

o

Comparing data and tensor model parallelism

GPU 2

i
ol

AN

Tensor Model Parallelism (partition output)

Forward Backward Gradients
Processing Propagation Sync

O(B * Cout/z) O(B * Cin) 0

Communication Cost of Tensor Model Parallelism
(partition output)

Comparing data and tensor model parallelism

GPU 1

=}
B

Tensor Model Parallelism (Reduce output)
y=y1l+y2

X

D (=
AN

&

Forward Backward Gradients
Processing Propagation Sync

O(B * Cout) O(B * Cin/z) 0

Communication Cost of Tensor Model Parallelism
(Reduce output)

Combine parallelism strategies

Model parallelism

A

Machine 2
Machine 1

.

”

: — Workload partitioning
. Machine 3 {| |

Data parallelism Machine 4

Convolutional Neural Networks

» Convolve the filter with the image: slide over the image spatially and
compute dot products

Source pixel
N-. A (-1x3)+(0x0)+(1x1)+
2 | (-2x2)+(0x6)+(2x2) +
% S (1x2)+(0x4)+(1x1) =-3 P
=]
_ e
]
==
L~
Convolution filter e e =
]
(Sobel Gx) == =
Destination pixel // //
//
o

Parallelizing Convolutional Neural Networks

« Convolutional layers
* 90-95% of the computation
* 5% of the parameters
* Very large intermediate activations

Data parallelism

 Fully-connected layers
* 5-10% of the computation
* 95% of the parameters
« Small intermediate activations

Tensor model parallelism

 How to parallelize CNNs?

Parallelizing Convolutional Neural Networks

« Data parallelism for convolutional layers

» Tensor model parallelism for fully-connected layers

Fully-connected

Convolutional

Model parallelism:

all workers train on same batch;
workers communicate as frequently as
netwo

>—<

Worker 1

Data parallelism:

each worker trains the same
convolutional layers on a different
data batch.

Worker K

Parallelizing Transformers

» Transformer: attention mechanism for language understanding

Output
Probabilities

| am a student

Linear A

((r “ r
[Add & Norm |
Add & Norm ENCODER > DECODER
Feed L J €
Forward A A
= B 4
. . | ENCODER J L DECODER
_ :
sl Multi-Head [- L
Feed Attention i it
(- Forward T 7 Nix (- ENCODER DECODER
()] ((b) \. J \
o) O) A
o) N o f % 4
O R f—>| Add & Norm l Weshed O ENCODER DECODER
c Mult-Head Multi-Head @ - 3 . ‘ 3
LL Attention Attention (M) - N -
Y ALt 2 ENCODER DECODER
O J U —) \ T J . T
Positional & Positional 4 E [
Encoding > Encoding ENCODER DECODER
Input Qutput C s .
Embedding Embedding
Inputs Outputs . - o~

(shifted right)
Ashish Vaswani et. al. Attention is all you need.

A Single Transformer Layer

Fully-Connected Layers

Self-Attention Layers

I
Self Attention &
Attention Dropout

Input Embeddings (tokens,
positions, ...) & Dropout

Parallelizing Fully-Connected Layers in Transformers

Y = GeLU(XXA)

| Z = Dropout(YxB) Reduction layer
|[dentity layer

/
| ——— |
[|
| oL M.
i =| X [= XA, @E@ = | Y1By
| |
= i i i
i o] m !
| = | X |=| XA, w‘,iwl'l#" Y2B,
| c B
i =
l < | l
L A =[A;1, A 4 \
Tensor model parallelism Tensor model parallelism
(partition output) (reduce output)

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Parallelizing Self-Attention Layers in Transformers

__
-~ ~

y Y = Self-Attention(X) R
/ \\ ,/”— i\’\\\
l' = Vi | \E / Z = Dropout(Y B) N
{ o |
|) — | : o :
| il e BT o Y 1 O m | i
| =K] | |5 I o !
E 5 = ii = g = [E
I (i SR)| &= 1
| E B [! .
; ®w§’m-§ >R V| | Y2B; =2 = i
| ~lx|-fam 5] B b | v
i ~— S 1t
1 | : :
=[BT B [Bl] /
; Q= [Q1, Q] | Bl oy
% split attention heads — ¢ K = [K, K] 4

L \V =106 e

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Parallelizing Transformers

m Model Parallel = Model + Data Parallel

100%
100%
o0 80% 95% 6%
= 82% 77% e 79%
T 60%
v
E 40%
< 20%
0%
1 2 4 8 64 128 256 512

Number of GPUS

Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Execution of the compute graph: pipeline parallelism

« Split a model into multiple subgraphs and assign them to different devices.
Run them by proper scheduling.

2

—

—J» cache

ML Model

Pipeline

Parallelism

> aggregate

Training Dataset

W i=w; —WIL(w) =WL—£Z VI;w)

A1

Issues with tensor / model parallelism

« Under-utilization of compute resources
» Low overall throughput due to resource utilization

Worker 1 @_’ Worker 1 § \ N \§§ ' \\j§
Worker 2)¢ 0P2 Worker 2 AW | . l\Q 1 \\ﬁ
Worker 3 ejek] - 1\\\ Qk
Worker 4 § §
Worker 4 [ejeZ op4 Time
- s

loss

Pipeline parallelism

« Mini-batch: the number of
samples processed in each
iteration

 Divide a mini-batch into
multiple micro-batches
(by partitioning the compute graph)

 Pipeline the forward and
backward computations
across micro-batches

O RN - RN
Worker 1 \‘%§§§§§§\k\ S ﬁ%
Worker 2 %&%&%% %§§ \
Worker 3 && % 1\\¥§§§\§§&
Worker 4 1(1 &%Q&& &&
Time
Forward] Backward =
. Pass S)
All inputs use weights from last flush Pipeline f.l ush:
add gradients
Worker 1 §\§§§:\\§:\\\\\§§N;\ \§ NS o I
Worker 2 ' §§§§ \\§\§&\$1 112123344 “§
Worker 3 N :5:::$1 HlAAAE § N X
Worker 4 'W1|1|2|2(3|3]|4]|4 §\\\‘:;‘;‘\ \\\i :i§‘§
>

Time

B Forward Pass [| Backward Pass Y dle

Pipeline parallelism

« Mini-batch: the number of
samples processed in each
iteration

 Divide a mini-batch into
multiple micro-batches
(by partitioning the compute graph)

 Pipeline the forward and
backward computations
across micro-batches

Improving resource utilization

A A O 1 [1 Nk
Worker 1 \‘%§§§§§§§ S Q%
Worker 2 %%&Q&% ;§%§ \
Worker 3 && % %%%Q\%&Q&
Worker 4 J/AZ MMM
Time
Forward] Backward Ny Idle
- Pass S
All inputs use weights from last flush F:(;;: I;::;::::'s
Worker 1 §\§§§\§:\\\\\§$§\\\\ \§1 12]2]3|3|af4
Worker 2 . §§\§3\‘*\§§§\1 10223 |3[4]4R
Worker 3 ' N ;‘:3:§$1 1(2(2]3]3 . 4§ N \:
Worker 4 'M1|1|2|2(3|3]|4]4 §\\\‘:;‘;‘\ \\\i :i§‘§
Time >

B Forward Pass [| Backward Pass Y dle

Pipeline parallelism: device utilization

* m . micro-batches in a mini-batch
* p: number of pipeline stages
* All stages take t;/t;, to process a forward (backward) micro-batch

mxty (P-1) *(tr +tp) mxt,

————

Device 1 AN WAL 1 (2|3]| 4 7 | 8 ERLIEAPARRESENL
Device 2 12345678 2 |1 3|4]|5 9 10111213141516
p Device 3 12345678 3|4|5]|6 910111213141516 E
Device 4 1234567 8 4 (5|6 |7 910111213141516nm
Time —— Devices idle

B Forward Pass [] Backward Pass

-1+ (+tp) _p—1
mx*ty + mxty m

BubbleFraction =

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Improving pipeline parallelism efficiency

 m : number of micro-batches in a mini-batch
* |Increase mini-batch size or reduce micro-batch size

« Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes
reduce GPU utilization

* p: number of pipeline stages
» Decrease pipeline depth
« Caveat: increase stage size

mrty (p-1) *(tr+ty) mxt,

Device 1 12345678

Device 2 123456738

910111213141516

Device 3 12345678

910111213141516

9 10111213141516“@
Time ——— Devices idle

B Forward Pass [] Backward Pass
-1 =*(ptty) _p-—-1

mx*ty + mxty m
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

B WN| =

Device 4 1234567 8

BubbleFraction =

Pipeline parallelism: memory requirement

* We need to keep the intermediate activations of all micro- batches
before back propagation

Pipeline flush
Device1 EPEREIERA: 1023|456]|7]|8 ERIIRPAEICAEAL:
Device 2 PEREREEERX: 2|/3|al|s5|6|7]|s 910111213141516
Device 3 112345678 3(a|5|6]7 9 10111213141516 a
Device 4 123456738[R 4|56 |78 910111213141516“@
Time ——— Devices idle

B Forward Pass [] Backward Pass

Can we improve the pipeline schedule to reduce
memory requirement?

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Pipeline parallelism with 1F1B schedule

Doesn’t reduce pipeline bubble

One-Forward-One-Backward in the steady state
Limit the number of in-flight micro-batches to the pipeline depth
Reduce memory footprint of pipeline parallelism

Can we reduce pipeline bubble?

in-flight mciro-batches = 8§ Pipelineflush

Device 1 1123 |4]|5 (6|7 |8 ERFIRIPAKIESEN

Device 2 123 |4|5 (6|78 910111213141516

Device 3 12 |3[4|5|6]7 910111213141516 n

Device 4 YA 1 |2 (3 |4|5|6|7 8 9 10111213141516“@
Time —— Devices idle

B Forward Pass [] Backward Pass

Pipeline parallelism with GPipe’s schedule

Device 2
Device 3
Device 4

Pipeline parallelism with 1F1B schedule

Pipeline parallelism with interleaved 1F1B schedule

* Further divide each stage into v sub-stages

» The forward (backward) time of each sub-stage is i ()
v v

vevice RN AR
vevice2 (AR B0 AR

Device 3 1234“ a| 2 5=6n7 18 25354

Device 4 451627384

Time ——
Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second
chunk.
u 1 (tf+tb)
-1 *—; 1 p-1
= — %
mx*ty + mxty v m

BubbleFraction =

Reduce bubble time at the cost increased communication

Pipeline parallelism with interleaved 1F1B schedule

Pipeline parallelism with By
1F1B Schedule _

Device 2

BubbleFraction = L Device 3

mn Device 4

Assign multiple stages
to each device

Pipeline parallelism with ,
interleaved 1F1B Schedule 2¢Vic®’ 2o 111 R EEd 1§12 1« IE

i IR e d e MR R
1 p—l Device 2 1234!55. 14203 L 182y3f a4

BubbleFraction = ” * m Device 3 1234“ 4| 2 5=6=7 182 H 3 H 4 Gl

Device 4 3|34556|6

Time ——

Forward Pass Backward Pass

Pipeline parallelism by partitioning computational graphs

Device 1
[X]—{matmul]—»[relu]—{matmul}—»@ Device 2

Strategy 1: Inter-operator Parallelism

Trade-off
[XJ_{math1}_{ — J_'[mathIJ_'@ Inter-operator Intra-operator

Parallelism Parallelism
] Communication Less More
Strategy 2: Intra-operator Parallelism
Device Idle Time More Less

[X J—{matmul]—{ relu J—v[matmulj—v@

L. Zheng, et al. Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. OSDI 2022.

Pipeline parallelism by partitioning computational graphs

Multiple intra-op strategies for a single node

D Row-partitioned [j Column-partitioned D Replicated

[x]—a{matmul}——{:relu }—{matmul}—+ﬁiﬂﬂ

Pipeline the execution for inter-op parallelism

wl) matmul matmul matmul)
EE; matmul matmul\w{matmul
1 matmul]

EE; matmul\l{matmul

Combine Intra-op and Inter-op

[X]—{matmul}—»[matmul}—{sub}

Throughput (TFLOPS)

Training Throughput of an MoE Model
50

40
30
20
10

Intra-op Only Inter-op Only Combined

0

Alpa compiler: hierarchical optimization

Computational Device ==
Graph C]—[C]]—[C]] Cluster Qo f®
Dynamic Programming Inter-op Pass
@ Cost Estimation
Integer Linear Programming

Intra-op Pass

v

Runtime
Orchestration

Inter-op pass
Computational Graph

—»[conv J—{ relu }—»{ conv]—»[a?d }—»{avgpool}—{matmul }—»[relu J—{matmul J—{softmax}

Graph Partitioning

Inter-op pass

4 Stage 1 N Stage 3 —
ﬂ[coanrelu Hconv]—»[add }»[avgpool matmul H relu Hmatmul softmax]
N

@ Stage 1 \? @ @ f{Stage é\:rf @ Stage 4

__

or

Inter-op pass

Partltloned Computational Graph

- o Em Em E mm Em mm Em Em w mm Em mm Em Em o mm m e Em mm o mm m mm Em mm mm M e mm e e o =

__

Device Assignment

Improving resource utilization on heterogeneous (datacenter) infrastructures

Inter-op pass

4 Stage 1 N Stage 3 —
ﬂ[conv H relu H conv]—-[add }»[avgpool matmul H relu Hmatmul softmax]

_ J
T
Solved together by Jeeu] eru] o] feey)
Dynamic Programming N
1= {20 =0 e -
cofenkenf colg

Intra-op pass

[matmul}—{ relu]—»[matmul} +

Stage @

Solved by
Integer Linear
Programming [matmul]—{ relu J—{matmul}

Stage with intra-operator
parallelization

Intra-op pass

Integer Linear Programming Formulation

Decision vector
Parallel strategies of each
operator

[matmul J—{ relu J—{matmul}

Minimize Computation cost + Communication cost

Compilation time optimization

Communication-aware

operator clustering in Early stopping in DP
ILP & DP

Distributed
Compilation

Alpa Compilation Time: < 40 min for the largest experiment.

e C(Can be further reduced by at least 50% with search space pruning.

Runtime orchestration

|

Parallelized
Stage 1

Compilation

0111
101

Intra-op Parallelism

A /
4 A

Submesh 1

v &

Static Mesh E
Executable 1 1014

Cross-mesh

Communication Submesh 2

<

ol

|

Parallelized

Stage n J

0111
1011

\

Static Mesh
Executable n

AN

Submesh n

v
Inter-op Parallelism

Evaluation of Alpa

Generalize to models
without manual plans.

Match specialized
manual systems.

Outperform the manual
baseline by up to 8x.

| |
| |
GPT (up to 39B) .~ GShard MoE (up to 70B) | Wide-ResNet (up to 13B)
| |
~4.0 .- ¥ o . ~0.6
e M Best Manual System | £ M Best Manual System | & Another Auto System
9 3.0{ ™ Alpa | g M Alpa | 9 M Alpa
o L a 2.0 | & 0.4
52.0 | = | =
s £ 2
3 1.0 | = | = I
o ! o ! o
| |
E o0 ool <M Fool— am HE -
1 4 8 16 32 64 | 1 4 8 16 32 64 | 1 4 16 32 64
#GPUs | #GPUs | #GPUS
i i
| |
| |
| |
| |
| |
| |

Weak scaling results where the model size grow with #GPUs.
Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total).

ML serving on heterogeneous (edge) infrastructures

Traditional data
centers

Customers and

connected devices Edge data centers

At nearby cell o At customers’
towers facilities

Data systems are growing into cloud + edge data centers.

JellyBean: serving & optimizing ML workflows on hybrid cloud

Infrastructure Workflow

Maximize overall serving costs by solving: Query: track vehicles across cameras.
° 1 Input 3 Object 5 Object
m_Odel p_lacement’ _ Image — | Detection o Re-ID
« with estimated accuracy constraints. H
Edge 2 |nput 4 Objegt / Answers
Prior loT Ilv t the ol - Image Detection
[
ror 101 apps manually tune the pians. Camoras
- Question: Which plan has the lowest overall cost?
S wn A: Compute Near Data B: Compute on Cloud
5 c Cost Cost
o T — 1 3 1 3
& o Comp 4 Comp*
w Net@* 2 4 5 Net (D A 2 4 5
u C &

Formulate as an optimization w/ a two-stage solver:
» Model selection (beam search) + worker assignment (ILP).
« Simplifying assumptions based on tiered infra & one-way data flow.

Evaluation on [Nvidia Al city, Visual Question Answering] & different infra setups:
At similar accuracy, improve serving costs by 30-60%.

Y. Wu, et al. Serving and Optimizing Machine Learning Workflows on Heterogeneous Infrastructures. VLDB 2023.

Summary: comparing different parallelisms

_’ \ PR S Ve _:‘ll /.\‘.\ .
GPU 1 — o 10 31 32 EE 33 32 31 30 Updats
% ’ \;L/md§, Model o e Fao | Fa1 | Fsz | Fas| B Bsz | Ba1 | Ba
ML Model [£ . | Parallelism - - Fzo | Fz: Faz | Fas Bos | Baz | Bar | B dat
,l=l| - GP?::}@. Ag;gsi]eart]itgn _l v N Fio | Fui|Fiz Fua| ¢ “ | Bis | Bz | Bua | Bue P
Traiataset e T.' o ‘Fn,u Fox | Foz | Fos Bubble) Bos | Boz | Batr | Boo | Upd
Training Dataset B —» GPU 2
g GPUN (C)
Data parallelism Tensor model parallelism Pipeline model parallelism
v' Massively parallelizable v Support training large models v Support large-batch training
Pros v Require no communication during v Efficient for models with large v’ Efficient for deep models
forward/backward numbers of parameters v Dynamic cloud architecture
+ Do not work for models that cannot < Limited parallelizability; cannot +» Limited utilization: bubbles in
fit on a GPU scale to large numbers of GPUs forward/backward

Cons & Do not scale for models with large % Need to transfer intermediate
numbers of parameters results in forward/backward

Summary: comparing different parallelisms

e }.< ;. \ GPU 1) l\ig/' $ ﬁ A T i.-:;"’l ‘Fm ‘ Fau ‘ F3‘2| Faa‘ Bas ‘ Bz ‘ Bas ‘ B:o Upciate
Update

Training large models requires combining ot
data/model/pipeline and other parallelization techniques -[=[= = -

Training Dataset ‘ A\ p— : yvg. ‘ - o
Data parallelism Tensor model parallelism Pipeline model parallelism

v' Massively parallelizable v Support training large models v Support large-batch training
Pros v Require no communication during v Efficient for models with large v’ Efficient for deep models
forward/backward numbers of parameters v Dynamic cloud architecture
s Do not work for models that cannot < Limited parallelizability; cannot +» Limited utilization: bubbles in
fit on a GPU scale to large numbers of GPUs forward/backward

Cons < Do not scale for models with large % Need to transfer intermediate
numbers of parameters results in forward/backward

Papers to read for next lecture

* None (Talk about projects)

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) Parallelism and Training Techniques
	Slide 2: Recap: Mapping compute graph to actual runtime
	Slide 3: Recap: Algorithmic workflows
	Slide 4: Execution of the compute graph: data parallelism
	Slide 5: Execution of the compute graph: data parallelism
	Slide 6: Data parallelism: Parameter Server (OSDI14)
	Slide 7: Data parallelism: Parameter Server (OSDI14)
	Slide 8: Data parallelism: Parameter Server (OSDI14)
	Slide 9: Ways of AllReduce
	Slide 10: Naïve AllReduce
	Slide 11: Ring AllReduce
	Slide 12: Ring AllReduce
	Slide 13: Ring AllReduce
	Slide 14: Ring AllReduce
	Slide 15: Ring AllReduce
	Slide 16: Ring AllReduce
	Slide 17: Ring AllReduce
	Slide 18: Tree AllReduce
	Slide 19: Tree AllReduce
	Slide 20: Butterfly AllReduce
	Slide 21: Butterfly AllReduce
	Slide 22: Comparing AllReduce methods
	Slide 23: Ring AllReduce v.s. Tree AllReduce v.s. Parameter Server
	Slide 24: Large model training challenges
	Slide 25: Execution of the compute graph: tensor / model parallelism
	Slide 26: =
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Combine parallelism strategies
	Slide 31: Convolutional Neural Networks
	Slide 32: Parallelizing Convolutional Neural Networks
	Slide 33: Parallelizing Convolutional Neural Networks
	Slide 34: Parallelizing Transformers
	Slide 35: A Single Transformer Layer
	Slide 36: Parallelizing Fully-Connected Layers in Transformers
	Slide 37: Parallelizing Self-Attention Layers in Transformers
	Slide 38: Parallelizing Transformers
	Slide 39: Execution of the compute graph: pipeline parallelism
	Slide 40: Issues with tensor / model parallelism
	Slide 41: Pipeline parallelism
	Slide 42: Pipeline parallelism
	Slide 43: Pipeline parallelism: device utilization
	Slide 44: Improving pipeline parallelism efficiency
	Slide 45: Pipeline parallelism: memory requirement
	Slide 46: Pipeline parallelism with 1F1B schedule
	Slide 47: Pipeline parallelism with interleaved 1F1B schedule
	Slide 48: Pipeline parallelism with interleaved 1F1B schedule
	Slide 49: Pipeline parallelism by partitioning computational graphs
	Slide 50: Pipeline parallelism by partitioning computational graphs
	Slide 51: Alpa compiler: hierarchical optimization
	Slide 52: Inter-op pass
	Slide 53: Inter-op pass
	Slide 54: Inter-op pass
	Slide 55: Inter-op pass
	Slide 56: Intra-op pass
	Slide 57: Intra-op pass
	Slide 58: Compilation time optimization
	Slide 59: Runtime orchestration
	Slide 60: Evaluation of Alpa
	Slide 61: ML serving on heterogeneous (edge) infrastructures
	Slide 62: JellyBean: serving & optimizing ML workflows on hybrid cloud
	Slide 63: Summary: comparing different parallelisms
	Slide 64: Summary: comparing different parallelisms
	Slide 65: Papers to read for next lecture

