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Sequence prediction

Take a set of input sequence, predict the output sequence

model

B

X1 X X3 Xy

Predict each output based on history  »=fe(*1.)



Method 1: direct / spot prediction

Yy

[

Direct model
X1 X2 X3 4

Challenge: inputs of different sizes.



Method 2: Recurrent Neural Networks

Try to maintain a “latent state” that is derived from history

¥1 \g) Y3 Ya

L L1 ]

hO > hl > h2 > h3 > h4_

.

The information is carried only through h,



“Attention” mechanism

Generally refers to the approach that weighted combine individual states

Attention output

t
Hidden states from % =
previous layer , , t— Z SiXe
—

l

Intuitively s; is “attention score” that computes how relevant the position i’s input is
to this current hidden output

There are different methods to compute attention scores



Transformer block and self attention

Atypical transformer block

Z = SelfAttention(XWi, X Wy, XWp)
Z = LayerNorm (X + Z)
H = LayerNorm(ReLU (ZW)W, + Z)

Txd
Given three inputs Q,K,V € R * “‘queries”, “keys”, “values”

If ( ) f (QKT>
SelfAttention(Q, K,V ) = softmax V
¢ Vd

normalize
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Feed forward

normalize

A

A
»
»

matmul
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matmul

Self-attention |




Transformer block and self attention

Atypical transformer block

Z = SelfAttention(XWi, X Wy, XWp)
Z = LayerNorm (X + Z)
H = LayerNorm(ReLU (ZW)W, + Z)

Txd
Given three inputs Q,K,V € R * “‘queries”, “keys”, “values”

— Similarity
QK"
SelfAttention(Q, K, V) = softmax v
f Vd
\
(Scaled Dot-Product Attention) Stilaeﬁo: ;%?(')?

weights

normalize

A

Feed forward
normalize

A

A
»
»

matmul

Self-attention |
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Self-attention operation

Use q;, k¢, v, to refer to row t of the K matrix

by ho] [hs) M@ Howto compute the output n,, based on q;, K,V

ﬁ[ one timestep t?

To keep it simple, we will drop suffix t and just
vl (val |vs| |vs use g to refer to g;




Self-attention operation

Use q;, k¢, v, to refer to row t of the K matrix

KT
SelfAttention(Q,K,V) = softmax( )V
\ JVd

ﬁ[ * Pre-softmax “attention score”

1
ky ks ks ky S; = ﬁqkiT
vy v, V3 v, - Weighed average via softmax
; exp(s;) v;
h= z softmax (s);v; = 2 exp(s) vy
: Zj exp(s;)

Intuition: s; computes the relevance of k; to the query g,
then we do weighted sum of values proportional to their relevance



Multi-head attention

Multiple “attention heads”, @V, kW, v® denotes j-th attention head

hgj) — * Apply self-attention in each attention head

« Concatenate all output heads together as output

kl(j) kgj) kgl) ki}')
, , , , « Can compute all heads and Q, K,V together then
v WD W) [P split/reshape out into individual Q, K, V with multiple heads

Each head can correspond to different kinds of information.

GQA (group query attention): all heads share K, V but have different Q
(K, V cache)



Masked self-attention

In the matrix form, we are computing weighted average over all inputs

h, h, h; h,
/% :

ky Ky ks k,

v, v, vy Vy

To maintain casual relation and only attend to some of the inputs (e.g.
skip the red dashed edge on the left), we can add “attention mask”

QK"
MaskedSelfAttention(Q, K, V) = softmax( Ny — M) 74

oo, j>1 00
My ={ 0} < 0

Only attend to previous inputs. Skip the computation that are masked out.
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Attention: O = Softmax(QK'") V
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Challenges:

* Large intermediate results

* Repeated reads/writes from GPU device memory

« Cannot scale to long sequences due to O(N”2) intermediate results



Attention optimizations

* LLM Training
* FlashAttention

 LLM Inference
* Recursive Attention
 Flash Decoding
» PagedAttention



Revisit: GPU memory hierarchy

Device global memory

(readable/writable by all

Per-block shared memory threads)

(readable/writable by all
threads in a block)

19 TB/s (20 MB)

1.5 TB/s (80 GB)



A = softmax(QKT)
FlashAttention EEEEEEEN

Key idea: compute attention by blocks to reduce global memory
access

Two main Techniques:
1.Tiling: restructure algorithm to load query/key/value block by
block from global to shared memory

2.Recomputation: don’t store attention matrix from forward, recompute
it in backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with |O-Awareness



Tiling: decompose large softmax into smaller ones by scaling

Outer Loop

1. Load inputs by blocks from global to

shared memory

2. On chip, compute attention output

wrt the block

3. Update output in device memory by

scaling

softmax([A4;,4,]) = [a@ X softmax(4;), B X softmax(4,)]

softmax([A4,,4,]) lgll = a X softmax(4,)V; + B X softmax(4,)V,
2

K:dxN

Copy Block to SRAM

Outer Loop V:NXd

Compute Block
on SRAM

Inner Loop
doo 433nQ

doon Jauyj

-

e <

Output to HEM
sm(QK"WV:Nxd

Inner Loop

FlashAttention



Keys (NxK)
IR IR RO

Tiling

R ERRRRRR TR O

Queries (NxK) Output Values
(NxK) (NxK)

(animation) https://jacksoncakes.com/img/in-post/post-flash-attn/flash-attn-viz.mp4

(Here Kis d from last slide)
Animation credit: Francisco Massa



Outer Loop

. Ki:dxN ]
Recomputation: backward pass F@pymocmm
. Outer Loop R V:NXd

By storing softmax normalization factors ' 2r mim T - — = — — 2
from forward (size N), recompute attention in
the backward from inputs in shared memory

Compute Block
on SRAM

Inner Loop
doo 433nQ

doon Jauyj

v

e <

Output to HEM

M Standard FlashAttention

GFLOPs 66.6 75.2 sm(QK")V: N xd
Global mem access 40.3 GB 4.4 GB TE—— .
Runtime 41.7 ms 7.3 ms FlashAttention

Speed up backward pass with increased FLOPs



FlashAttention v2: threadblock-level parallelism

How to partition FlasshAttention across

thread blocks?

(An A100 has 108 SMMs -> 108 thread

blocks)

« Step 1: assign different heads to different

thread blocks (16-64 heads)

Outer Loop

K:dxN

Copy Block to SRAM

Outer Loop V:NXd

Compute Block
on SRAM

Inner Loop
doo 433nQ

doon Jauyj

-

e <

Output to HEM
sm(QK")V:N xd

Inner Loop

FlashAttention



FlashAttention v2: threadblock-level parallelism

Outer Loop

How to partition FlasshAttention across -

thread blocks? K:dxN
Copy Block to SRAM
(An A100 has 108 SMMs -> 108 thread j
Q:Nxd > V:NXd

blocks) g e 3
gl 0o |
B | insaaeas 1
e S vl | o
- Step 1: assign different heads to different 2 - ComputeBlock 8
thread blocks (16-64 heads) Hl & 12 M3
- Step 2: assign different queries | : H
(not K/V) to different thread blocks v . \ '

e <

Output to HEM
) sm(QK"WV:Nxd
Thread blocks cannot communicate; cannot -

Inner Loop

perform softmax when partitioning keys/values FlashAttention




FlashAttention v2: threadblock-level parallelism

Keys/Values

Block 1
Block 2
Block 3

Block 4
Block 5

Queries

Forward pass
No need to handle workload imbalance.

GPU scheduler automatically loads the next block once the
current one completes.



FlashAttention v2: warp-level parallelism

* How to partition FlashAttention across warps within a thread block?

KT K"
(A = YT T I
! Warp1l | Warp2 : Warp 3 : Warp 4 ! v Warp 1-4
Q Lo /I‘ 777777 AOESSET AREITEY ’ Q | 74
f ) (C T ]
Warp 1-4 { Warpl1 | | Warpl
1
o2 : Warp 2 : Warp 1-4
______ 1
Warp 3
Warp 3
Warp 4
,,,,,, Warp 4
Accessed byallwarps e
A d by all warps

_____
~~~~~

_____

(a) FLASHATTENTION (b) FLASHATTENTION-2

@ Splitting across K/V requires Splitting across Q avoids ©
communication to add results communications



Speed (TFLOPs/s)

FlashAttention v2: 2-4x speedup, 10-20x memory reduction

200

150

100

w
o
L

Attention forward + backward speed (A100 80GB SXM4)

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

512

FlashAttention Memory Reduction
189 ﬁ 20 1 B Dropout + Masking
182 $
£ 15
2=
(=i
9
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>
©
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o
=
[}
= 0 -
128 256 512 1024 2048 4096

1k 2k 4k 8k 16k Sequence Length
Sequence length

Memory linear in sequence length



Attention optimizations

* LLM Training
* FlashAttention

 LLM Inference
* Recursive Attention
 Flash Decoding
» PagedAttention



Generalizing attention score and value vector

11 - b 1
Pre-softmax “attention score si=ﬁqk?

Define the following “attention weight” for an index set I

s(I) = log(z exp(sy))

i€l
Generalize the value vector v for index set I

Zi (v
v(I) = Xier softmax(s);v; = 2;;)((5(;))1)

When index set I = {i}, s{i}) = s;, v{i}) =,
When index set I = {1,2, ...t} , v(I) is the final output of the attention

Flashinfer: Efficient and Customizable Attention Engine for LLM Inference Serving. MLsys 2025



Flashlnfer: recursive attention

s(I) = log (Z exp(si)> () = Z softmax(s);v; = Ziee;le)g((;)iivi

L€l L€l

For any partition {3} of I such that [ =U]n=1 [, the following relation holds

S(U}"‘zl Ij) = logz exp (S(Ij)) , v(U}‘=1 Ij) = z softmax([s(1,), s(Iy), ...])jv(lj)
J J
Attention computation is communicative and associative, can be done by divide-and-conquer.

This is an important property for a lot of system optimization:
We can recursively combine the vector and “attention score” of any subsets of indices.

Flashinfer: Efficient and Customizable Attention Engine for LLM Inference Serving. MLsys 2025



Attention optimizations

* LLM Training
* FlashAttention

 LLM Inference
* Recursive Attention
 Flash Decoding
» PagedAttention



Generative LLM inference: autoregressive decoding

Input Prompt:  [Accelerating LLM requires machine] :» learning ;> systems :>optimizations

Iter O Iter 1 Iter 2 lter 3

R R S T
Layer 1 Layer 1 Layer 1 Layer 1
S S T N T
Layer 2 Layer 2 Layer 2 Layer 2
| D T A T
Layer 3 Layer 3 Layer 3 Layer 3
Voo ! ! !

Outputs:  learning E: systems foptlmlzatlonsw [EOS]

L.LII-LL.



Generative LLM inference: autoregressive decoding

Attention Score

Acc. | 1
LLM[ 2|0
requires| 5|1 |3
machine| 2 |0 (1|1
o= g9
< 3 = = Layer 3
c‘ U
iz

Pre-filling Phase



Generative LLM inference: autoregressive decoding

Attention Score

learning| 1|0 |7 |12

§3e2¢2

Layer 3 <135 c©
T 8 &

gwo

Decoding Phase




Generative LLM inference: autoregressive decoding

(O-th iteration):
* Process all input tokens at once

(all other iterations):
* Process a single token generated from previous iteration
» Use attention keys & values of all previous tokens

« Key-value cache:

« Save attention keys and values for the following iterations to avoid
recomputation



Apply FlashAttention to LLM inference

Attention Comp. Attention Comp

Acc.

] learning
L.LM = 3 ¢ o
requires <3 s £ £
machine S8 &
S E 9
g3 g ¢
<35z
=3
S E
Pre-filling phase: Decoding phase:
* Yes, compute different queries * No, there is a single query in the

using different thread blocks/warps decoding phase



FlashAttention processes K/V sequentially

Values

Keys

Queries

Output

(animation) https://pytorch.org/assets/images/Inference_regular_attn.gif

Inefficient for requests with long context (many keys/values)



Flash-decoding parallelizes across keys/values

1. Split keys/values into small chunks
2. Compute attention with these splits using FlashAttention
3. Reduce overall all splits

Values

Keys

Queries !

Output

Split 1/5 split 2/5 Split 3/5 Split 4/5 split 5/5

(animation) https://pytorch.org/assets/images/inference_splitkv.gif

Key insight: attention is associative and commutative (recall Recursive Attention)



Flash-decoding is up to 8x faster than prior work

40 1

30 4

tok/s

20+

10 ~

Codellama-34b end-to-end decoding speed [bs=1, MP=4]

—— pytorch primitives
—— flash-attention
—— FT attention

—— flash-deceding

™

1
103

T |
10%
Prompt length




Attention optimizations

* LLM Training
* FlashAttention

 LLM Inference
* Recursive Attention
 Flash Decoding
« PagedAttention



KV cache dynamically grows and shrinks

[Accelerating LLM requires machine]

. . Iter O
Attention Matrix I
— I 1
e ayer
LLM l
requires Layer 2
machine !
8 E 3 E Layer 3
< 1 5 C©
o 2 !
e E
Outputs:  learning
o
= w | o
ol s | 2| E
KV Cache | 3| 3|5
[3} —I =3 ©
3 =
<




KV cache dynamically grows and shrinks

[Accelerating LLM requires machine] :»> learning

lter0 | lter1

+ B
Attention Matrix Layer1 ; Layer1
learning| | [ | | | ' '
s 2 0 o Layer2 : Layer2
85 e £ s
<3 S¢g € !
o8 © E
e o Layer3 : Layer3
.
Outputs: learning ¢ systems
2
= )
© ) S
o) 5 =
KV Cache ks = £
(7] o @
8 o Q
<




KV cache dynamically grows and shrinks

[Accelerating LLM requires machine]

Attention Matrix

systems| | | | | | |

Acc

LLM
requires
machine

KV Cache

learning
systems

Iter 0
+

Layer 1

|

Layer 2

,

Layer 3

4

Outputs:  learning

requires
machine

(®))
c
-—
©
S
Q@
®
QO
(]
<

:»> learning

lter 1
4

Layer 1

|

Layer 2

|
Layer 3
4

;> systems

lter 2
}

Layer 1

|

Layer 2

!

Layer 3
!

systems -‘optimizations




KV cache dynamically grows and shrinks

[Accelerating LLM requires machine]

Iter O
+

Attention Matrix Layer 1

|

optimizations| |

Acc
LLM
requires| |
machine

opt.

'

learning
systems

.

Outputs:  learning

KV Cache
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Iter 1
}
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}
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'
Layer 3

!
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[ ™
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;> systems :»>optimizations

lter 2 Iter 3
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Layer 1 Layer 1
|
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S
Layer 3 Layer 3
A

--5optimizationsf: [EOS]

[ S

optimizations



Static KV cache management wastes memory

0

3 As max length

Artificialllntellige| is REERZIGCEEZ T N CHZSCEZ .. Alan | Turing
nce
Y Y Y Y
3 KV Cache slots for Pre-allocated slots for As output External frag. Request B

request As prompt

(Internal frag.)

* Pre-allocates contiguous space of memory to the request’s maximum

length

« Memory fragmentation
* Internal fragmentation due to unknown output length
- External fragmentation due to non-uniform per-request max lengths

Slides from viim: Efficient Memory Management for Large Language Model Serving with PagedAttention



Significant memory waste in KV cache

* Only 20-40% of KV cache is utilized to store actual token states

M KV Cache " Internal frag. M External frag. & Others
100 1

80 -
60

401

KV Cache space usage (%)

Orca Orca Orca
(Max) (Pow?2) (Oracle) vilm



PagedAttention

 Application-level memory paging and virtualization for KV cache

Memory management in OS

Page 0

Process Page 1
A Page 2
Page 3

Page 4

Physical Memory

Process
B

PagedAttention

Request
A

KV Block 0

KV Block 1

KV Block 2

KV Block 3

KV Block 4

KV Cache

Request
B



Paging KV cache space into KV blocks™

» KV block is a fixed-size contiguous

chunk of memory that stores KV KV blocks
states from left to right block 0

block 1

block 2

block 3 I( v c:m

block 4 Arﬁﬁciacrl:eﬂ;pin i the

block 5 i H .

block 6

block 7

C y

~
Block size = 4

* overloaded in PagedAttention



Attention with virtualized KV cache

Physical KV blocks

Request block 0
A
computer | scientist
block 1
Prompt: “Alan Turing is a computer scientist”
block 2
Logical KV blocks Block table block 3
Alan Turing is a Physical | #Filled
block 0 \ block number block 4
computer | scientist 7 4
block 1 ~ 1 > block 5
block 2 B B block 6
block 3 block 7 Alan Turing is




Attention with virtualized KV cache

1. Fetch non-contiguous KV blocks using the block table
2. Apply attention on the fly

KV Cache
Block 1 [computer| scientist and ma_the-
matician
Block table
Physical )
block number | * Filed
5 4 Block 2 |renowned| for
Query for \i 0 4
2 2
Block 0 | Alan Turing is a

Key insight: attention is associative and commutative



Memory management with PagedAttention

Physical KV blocks

Request block 0
A
computer | scientist
block 1
Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
Alan | Turing is a Physical | #Filled
block 0 \ block number block 4
computer | scientist 7 4
block 1 ~ 1 2 block 5
block 2 - - block 6
block 3 block 7 Alan Turing is




Memory management with PagedAttention

Physical KV blocks

Request block 0
A
computer | scientist
block 1
Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
Alan Turing is a Physical | #Filled
block 0 \ block number block 4
computer | scientist | and 7 4
block 1 ~ 1 2 block 5
block 2 - - block 6
block 3 block 7 Alan Turing is




Memory management with PagedAttention

Physical KV blocks

Request block 0
A
computer | scientist| and
block 1
Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
Alan Turing is a Physical | #Filled
block 0 \ block number block 4
computer | scientist | and 7 4
block 1 ~ 1 3 block 5
block 2 - B block 6
block 3 block 7 Alan Turing is




Memory management with PagedAttention

Prompt: “Alan Turing is a computer scientist”

Request

A

Completion: “and_mathematician”

block 0

block 1

block 2

block 3

Logical KV blocks Block table
Alan Turing is a Physical | # Filled
block number
computer | scientist | and |[mathem 7 4
atician 1

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Physical KV blocks

computer

scientist

and

mathem
atician

Alan

Turing




Memory management with PagedAttention

Physical KV blocks

Request block 0
A
block 1| computer | scientist| and mgthem
atician
Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician renowned” block 2
Logical KV blocks Block table block 3
Alan Turing is a Physical # Filled B Allocated on demand
block 0 \ block number block 4
computer | scientist and |mathema 7 4
block 1 tician [~ y 2 block 5 [renowned
renowned 5 1
block 2 > block 6
block 3 block 7| Alan Turing is a




Memory efficiency of PagedAttention

Minimal internal fragmentation

* Only happens at the last block of a sequence
» # wasted tokens / seq < block size

No external fragmentation

B KV Cache " Internal frag. M External frag. & Others
100 -

80 1

60 -

KV Cache space usage (%)

Orca Orca Orca
(Max) (Pow2) (Oracle) viim

Alan

Turing

a

computer

scientist

and

mathemati
cian

renowned

—

A

Internal

fragmentation



Summarize: techniques for optimizing attention

Flashinfer: incremental / divide-and-conquer attention compute

FlashAttention: tiling to reduce GPU global memory access

Auto-regressive Decoding: pre-filling and decoding phases, KV cache

FlashDecoding: improving attention’s parallelism by splitting keys/values

PagedAttention: paging and virtualization to reduce KV cache’s memory
requirement



Recess next week

* No lecture



