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Take a set of input sequence, predict the output sequence

𝑦1 𝑦2 𝑦3 𝑦4

model ….

𝑥1 𝑥2 𝑥3

Predict each output based on history

Sequence prediction

𝑥4

𝑦t =𝑓ఏ(𝑥ଵ:௧)



Method 1: direct / spot prediction

Challenge: inputs of different sizes.

….

𝑦4

𝑥1 𝑥2 𝑥3                   𝑥4

Direct model



Method 2: Recurrent Neural Networks

Try to maintain a “latent state” that is derived from history

….

The information is carried only through ℎt

𝑥1 𝑥2 𝑥3                   𝑥4

y1 y2 y3                   y4

h1 h2 h3                   h4h0



“Attention” mechanism

Generally refers to the approach that weighted combine individual states

Hidden states from 
previous layer

Attention output

Intuitively 𝑠௜ is “attention score” that computes how relevant the position 𝑖’s input is 
to this current hidden output

There are different methods to compute attention scores

h1 h2 h3                   h4

x1 x2 x3                   x4

ℎ௧ = ෍ 𝑠௜𝑥௧

௧

௜ୀଵ



Transformer block and self attention

𝑉𝐾𝑄

normalize

normalize

Feed forward

matmul

softmax

matmul

output

input

Self-attention

𝑍 = SelfAttention 𝑋𝑊K, X 𝑊Q , 𝑋𝑊V

𝑍 = LayerNorm 𝑋 + 𝑍
𝐻 = LayerNorm(ReLU 𝑍𝑊1 𝑊2 + 𝑍)

A typical transformer block

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
QK்

𝑑
𝑉

Given three inputs 𝑄, 𝐾, 𝑉 ∈ ℝ
்×ௗ

   “queries”, “keys”, “values”



Transformer block and self attention

𝑉𝐾𝑄

normalize

normalize

Feed forward

matmul

softmax

matmul

output

input

Self-attention

𝑍 = SelfAttention 𝑋𝑊K, X 𝑊Q , 𝑋𝑊V

𝑍 = LayerNorm 𝑋 + 𝑍
𝐻 = LayerNorm(ReLU 𝑍𝑊1 𝑊2 + 𝑍)

A typical transformer block

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
QK்

𝑑
𝑉

Given three inputs 𝑄, 𝐾, 𝑉 ∈ ℝ
்×ௗ

   “queries”, “keys”, “values”

Select →
attention 
weights

Similarity

Scale 
factor

(Scaled Dot-Product Attention)



Self-attention operation

Use 𝑞௧, 𝑘௧, 𝑣௧ to refer to row 𝑡 of the 𝐾 matrix

𝑞௧ How to compute the output ℎ𝑡 
, based on 𝑞௧, 𝐾, 𝑉

one timestep 𝑡?

To keep it simple, we will drop suffix 𝑡 and just
use 𝑞 to refer to 𝑞௧

h1 h2 h3                   h4

k1 k2 k3                   k4

v1 v2 v3                   v4



Self-attention operation

• Pre-softmax “attention score”

• Weighed average via softmax

Use 𝑞௧, 𝑘௧, 𝑣௧ to refer to row 𝑡 of the 𝐾 matrix

𝑠௜ =
1

𝑑
𝑞𝑘௜

்

Intuition: 𝑠௜ computes the relevance of 𝑘௜ to the query 𝑞,
then we do weighted sum of values proportional to their relevance

𝑞௧
h1 h2 h3                   h4

k1 k2 k3                   k4

v1 v2 v3                   v4

ℎ = ෍ softmax 𝑠 ௜𝑣௜ =
∑ exp 𝑠௜ 𝑣௜௜

∑ exp (𝑠௝)௝௜

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾்

𝑑
𝑉



Multi-head attention

Multiple “attention heads”, denotes 𝑗-th attention head

• Apply self-attention in each attention head

• Concatenate all output heads together as output

Each head can correspond to different kinds of information.
GQA (group query attention): all heads share K, V but have different Q

𝑄 ௝ , 𝐾 ௝ , 𝑉(௝) 

ℎଵ
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(K, V cache)

• Can compute all heads and 𝑄, 𝐾, 𝑉 together then 
split/reshape out into individual 𝑄, 𝐾, 𝑉 with multiple heads



Masked self-attention

MaskedSelfAttention 𝑄, 𝐾, 𝑉 = softmax − 𝑀 𝑉

𝑞3

In the matrix form, we are computing weighted average over all inputs

To maintain casual relation and only attend to some of the inputs (e.g.
skip the red dashed edge on the left), we can add “attention mask”

𝑀ij = 0, 𝑗 ≤ 𝑖
∞, 𝑗 > 𝑖

Only attend to previous inputs. Skip the computation that are masked out.

∞

0

h1 h2 h3                   h4

k1 k2 k3                   k4

v1 v2 v3                   v4

𝑄𝐾்

𝑑



Attention: O = Softmax(QKT) V
Q: N x d K: N x d A = QKT : N x N A = softmax(A) : N x N V: N x d O = AV: N x d

Challenges:
• Large intermediate results

• Repeated reads/writes from GPU device memory

• Cannot scale to long sequences due to O(N^2) intermediate results

A = mask(A)



Attention optimizations

• LLM Training

• FlashAttention

• LLM Inference

• Recursive Attention

• Flash Decoding

• PagedAttention



Revisit: GPU memory hierarchy

Per-block shared memory 
(readable/writable by all 

threads in a block)

19 TB/s (20 MB)

Device global memory 
(readable/writable by all 

threads)

1.5 TB/s (80 GB)



FlashAttention

Key idea: compute attention by blocks to reduce global memory 
access

Two main Techniques:

1.Tiling: restructure algorithm to load query/key/value block by 
block from global to shared memory

2.Recomputation: don’t store attention matrix from forward, recompute 
it in backward

A = softmax(QKT)

* FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness



Tiling: decompose large softmax into smaller ones by scaling

1. Load inputs by blocks from global to 
shared memory

2. On chip, compute attention output 
wrt the block

3. Update output in device memory by 
scaling

``

softmax 𝐴ଵ, 𝐴ଶ = 𝛼 × softmax 𝐴ଵ , 𝛽 × softmax 𝐴ଶ

softmax 𝐴ଵ, 𝐴ଶ
𝑉ଵ

𝑉ଶ
= 𝛼 × softmax 𝐴ଵ 𝑉ଵ + 𝛽 × softmax 𝐴ଶ 𝑉ଶ



Tiling

Animation credit: Francisco Massa
(Here K is d from last slide)

(animation) https://jacksoncakes.com/img/in-post/post-flash-attn/flash-attn-viz.mp4



Recomputation: backward pass

By storing softmax normalization factors 
from forward (size N), recompute attention in 
the backward from inputs in shared memory

Speed up backward pass with increased FLOPs

FlashAttentionStandardAttention

75.266.6GFLOPs

4.4 GB40.3 GBGlobal mem access

7.3 ms41.7 msRuntime



FlashAttention v2: threadblock-level parallelism

How to partition FlasshAttention across 
thread blocks?

(An A100 has 108 SMMs -> 108 thread 
blocks)

• Step 1: assign different heads to different 
thread blocks (16-64 heads)



How to partition FlasshAttention across 
thread blocks?

(An A100 has 108 SMMs -> 108 thread 
blocks)

• Step 1: assign different heads to different 
thread blocks (16-64 heads)

• Step 2: assign different queries
(not K/V) to different thread blocks

Thread blocks cannot communicate; cannot 
perform softmax when partitioning keys/values

FlashAttention v2: threadblock-level parallelism



FlashAttention v2: threadblock-level parallelism

Queries

Keys/Values

Block 1

Block 2

Block 3

Block 4

Block 5

No need to handle workload imbalance.

GPU scheduler automatically loads the next block once the
current one completes.

Forward pass



FlashAttention v2: warp-level parallelism

• How to partition FlashAttention across warps within a thread block?

Splitting across K/V requires 
communication to add results

Splitting across Q avoids 
communications



FlashAttention v2: 2-4x speedup, 10-20x memory reduction

Memory linear in sequence length



Attention optimizations

• LLM Training

• FlashAttention

• LLM Inference

• Recursive Attention

• Flash Decoding

• PagedAttention



Generalizing attention score and value vector

Pre-softmax “attention score”

FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving. MLsys 2025

Define the following “attention weight” for an index set 𝐼

𝑠(𝐼)  =  log (෍ exp(𝑠௜))

௜∈ூ

Generalize the value vector v for index set 𝐼

𝑣 𝐼 = ∑ softmax 𝑠 ௜𝑣௜௜∈ூ =
∑ ୣ୶୮ ௦೔ ௩೔೔∈಺

ୣ୶୮ ௦ ூ

𝑠௜ =
1

𝑑
𝑞𝑘௜

்

When index set 𝐼 = {𝑖} , s 𝑖 = 𝑠௜, v 𝑖  = 𝑣௜

When index set 𝐼 = {1,2, … 𝑡} , v 𝐼 is the final output of the attention



FlashInfer: recursive attention

Attention computation is communicative and associative, can be done by divide-and-conquer.

This is an important property for a lot of system optimization:
We can recursively combine the vector and “attention score” of any subsets of indices. 

𝑠 𝐼 = log ෍ exp 𝑠௜

௜∈ூ

, 𝑣(𝐼) = ෍ softmax 𝑠 ௜𝑣௜ =
∑ exp 𝑠௜ 𝑣௜௜∈ூ

exp(𝑠 𝐼 )
௜∈ூ

𝑠 ∪௝ୀଵ
௡ 𝐼௝ = log ෍ exp 𝑠 𝐼௝

௝

, 𝑣 ∪௝ୀଵ
௡ 𝐼௝ = ෍ softmax 𝑠 𝐼ଵ , 𝑠 𝐼ଶ , … ௝𝑣 𝐼௝

௝

For any partition {𝐼௝ } of 𝐼 such that 𝐼 =∪௝ୀଵ
௡ 𝐼௝ , the following relation holds

FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving. MLsys 2025



Attention optimizations

• LLM Training

• FlashAttention

• LLM Inference

• Recursive Attention

• Flash Decoding

• PagedAttention



Generative LLM inference: autoregressive decoding



Generative LLM inference: autoregressive decoding



Generative LLM inference: autoregressive decoding



Generative LLM inference: autoregressive decoding

• Pre-filling phase (0-th iteration):
• Process all input tokens at once

• Decoding phase (all other iterations):
• Process a single token generated from previous iteration
• Use attention keys & values of all previous tokens

• Key-value cache:
• Save attention keys and values for the following iterations to avoid 

recomputation



Apply FlashAttention to LLM inference

Pre-filling phase:

• Yes, compute different queries 
using different thread blocks/warps

Decoding phase:

• No, there is a single query in the 
decoding phase

Attention Comp.
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FlashAttention processes K/V sequentially

Inefficient for requests with long context (many keys/values)

(animation) https://pytorch.org/assets/images/Inference_regular_attn.gif



Flash-decoding parallelizes across keys/values
1. Split keys/values into small chunks

2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits

Key insight: attention is associative and commutative (recall Recursive Attention) 

(animation) https://pytorch.org/assets/images/inference_splitkv.gif



Flash-decoding is up to 8x faster than prior work



Attention optimizations

• LLM Training

• FlashAttention

• LLM Inference

• Recursive Attention

• Flash Decoding

• PagedAttention



KV cache dynamically grows and shrinks



KV cache dynamically grows and shrinks



KV cache dynamically grows and shrinks



KV cache dynamically grows and shrinks



Static KV cache management wastes memory

• Pre-allocates contiguous space of memory to the request’s maximum 
length

• Memory fragmentation
• Internal fragmentation due to unknown output length
• External fragmentation due to non-uniform per-request max lengths

3 KV Cache slots for 
request A’s prompt

Request BPre-allocated slots forA’s output 
(Internal frag.)

Slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

0 3 A’s max length

External frag.

…TuringAlan……<resv><resv>…<resv><resv>isIntellige 
nce

Artificial



Significant memory waste in KV cache

• Only 20-40% of KV cache is utilized to store actual token states

vllm



PagedAttention

• Application-level memory paging and virtualization for KV cache

Process 
A

Process 
B

Physical Memory

Request
A

Request
B

KV Cache

Memory management in OS PagedAttention

Page 0
Page 1
Page 2
Page 3
Page 4

KV Block 0
KV Block 1
KV Block 2
KV Block 3
KV Block 4



Paging KV cache space into KV blocks*

• KV block is a fixed-size contiguous 
chunk of memory that stores KV 
states from left to right

* overloaded in PagedAttention



Attention with virtualized KV cache

Request
A

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks Block table
aisTuringAlan

scientistcomputer

scientistcomputer

aisTuringAlan

# FilledPhysical 
block number

47

21

––

––



Attention with virtualized KV cache

1. Fetch non-contiguous KV blocks using the block table

2. Apply attention on the fly

Key insight: attention is associative and commutative



Memory management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist” 
Completion: “and”

block 0

block 1

block 2

block 3

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks Block table
aisTuringAlan

scientistcomputer

scientistcomputer

aisTuringAlan

# FilledPhysical 
block number

47

21

––

––



Memory management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist” 
Completion: “and”

block 0

block 1

block 2

block 3

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks Block table
aisTuringAlan

andscientistcomputer

scientistcomputer

aisTuringAlan

# FilledPhysical 
block number

47

21

––

––



Memory management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist” 
Completion: “and”

block 0

block 1

block 2

block 3

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks Block table
aisTuringAlan

andscientistcomputer

andscientistcomputer

aisTuringAlan

# FilledPhysical 
block number

47

31

––

––



Memory management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist” 
Completion: “and mathematician”

block 0

block 1

block 2

block 3

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks Block table
aisTuringAlan

mathem 
atician

andscientistcomputer

mathemandscientistcomputer

atician

aisTuringAlan

# FilledPhysical 
block number

47

31

––

––



Memory management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist” 
Completion: “and mathematician renowned”

block 0

block 1

block 2

block 3

computer scientist and
mathem 
atician

block 5 renowned

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 6

block 7

Logical KV blocks Block table
Allocated on demandaisTuringAlan

mathema 
tician

andscientistcomputer

renowned

# FilledPhysical 
block number

47

41

15

––



Memory efficiency of PagedAttention

Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

No external fragmentation

vllm

Internal 
fragmentation

aisTuringAlan

mathemati 
cian

andscientistcomputer

renowned



Summarize: techniques for optimizing attention

• FlashInfer: incremental / divide-and-conquer attention compute

• FlashAttention: tiling to reduce GPU global memory access

• Auto-regressive Decoding: pre-filling and decoding phases, KV cache

• FlashDecoding: improving attention’s parallelism by splitting keys/values

• PagedAttention: paging and virtualization to reduce KV cache’s memory 
requirement



Recess next week

• No lecture


