
CS6216 Advanced Topics in Machine Learning (Systems)

Transformers, Attention and Optimizations

Yao LU
17 Sep 2026

National University of Singapore
School of Computing

Take a set of input sequence, predict the output sequence

𝑦1 𝑦2 𝑦3 𝑦4

model ….

𝑥1 𝑥2 𝑥3

Predict each output based on history

Sequence prediction

𝑥4

𝑦t =𝑓ఏ(𝑥ଵ:௧)

Method 1: direct / spot prediction

Challenge: inputs of different sizes.

….

𝑦4

𝑥1 𝑥2 𝑥3 𝑥4

Direct model

Method 2: Recurrent Neural Networks

Try to maintain a “latent state” that is derived from history

….

The information is carried only through ℎt

𝑥1 𝑥2 𝑥3 𝑥4

y1 y2 y3 y4

h1 h2 h3 h4h0

“Attention” mechanism

Generally refers to the approach that weighted combine individual states

Hidden states from
previous layer

Attention output

Intuitively 𝑠௜ is “attention score” that computes how relevant the position 𝑖’s input is
to this current hidden output

There are different methods to compute attention scores

h1 h2 h3 h4

x1 x2 x3 x4

ℎ௧ = ෍ 𝑠௜𝑥௧

௧

௜ୀଵ

Transformer block and self attention

𝑉𝐾𝑄

normalize

normalize

Feed forward

matmul

softmax

matmul

output

input

Self-attention

𝑍 = SelfAttention 𝑋𝑊K, X 𝑊Q , 𝑋𝑊V

𝑍 = LayerNorm 𝑋 + 𝑍
𝐻 = LayerNorm(ReLU 𝑍𝑊1 𝑊2 + 𝑍)

A typical transformer block

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
QK்

𝑑
𝑉

Given three inputs 𝑄, 𝐾, 𝑉 ∈ ℝ
்×ௗ

 “queries”, “keys”, “values”

Transformer block and self attention

𝑉𝐾𝑄

normalize

normalize

Feed forward

matmul

softmax

matmul

output

input

Self-attention

𝑍 = SelfAttention 𝑋𝑊K, X 𝑊Q , 𝑋𝑊V

𝑍 = LayerNorm 𝑋 + 𝑍
𝐻 = LayerNorm(ReLU 𝑍𝑊1 𝑊2 + 𝑍)

A typical transformer block

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
QK்

𝑑
𝑉

Given three inputs 𝑄, 𝐾, 𝑉 ∈ ℝ
்×ௗ

 “queries”, “keys”, “values”

Select →
attention
weights

Similarity

Scale
factor

(Scaled Dot-Product Attention)

Self-attention operation

Use 𝑞௧, 𝑘௧, 𝑣௧ to refer to row 𝑡 of the 𝐾 matrix

𝑞௧ How to compute the output ℎ𝑡
, based on 𝑞௧, 𝐾, 𝑉

one timestep 𝑡?

To keep it simple, we will drop suffix 𝑡 and just
use 𝑞 to refer to 𝑞௧

h1 h2 h3 h4

k1 k2 k3 k4

v1 v2 v3 v4

Self-attention operation

• Pre-softmax “attention score”

• Weighed average via softmax

Use 𝑞௧, 𝑘௧, 𝑣௧ to refer to row 𝑡 of the 𝐾 matrix

𝑠௜ =
1

𝑑
𝑞𝑘௜

்

Intuition: 𝑠௜ computes the relevance of 𝑘௜ to the query 𝑞,
then we do weighted sum of values proportional to their relevance

𝑞௧
h1 h2 h3 h4

k1 k2 k3 k4

v1 v2 v3 v4

ℎ = ෍ softmax 𝑠 ௜𝑣௜ =
∑ exp 𝑠௜ 𝑣௜௜

∑ exp (𝑠௝)௝௜

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾்

𝑑
𝑉

Multi-head attention

Multiple “attention heads”, denotes 𝑗-th attention head

• Apply self-attention in each attention head

• Concatenate all output heads together as output

Each head can correspond to different kinds of information.
GQA (group query attention): all heads share K, V but have different Q

𝑄 ௝ , 𝐾 ௝ , 𝑉(௝)

ℎଵ
(௝)

ℎଶ
(௝)

 ℎଷ
(௝)

ℎସ
(௝)

𝑘ଵ
(௝)

𝑘ଶ
(௝)

 𝑘ଷ
(௝)

𝑘ସ
(௝)

𝑣ଵ
(௝)

𝑣ଶ
(௝)

 𝑣ଷ
(௝)

𝑣ସ
(௝)

(K, V cache)

• Can compute all heads and 𝑄, 𝐾, 𝑉 together then
split/reshape out into individual 𝑄, 𝐾, 𝑉 with multiple heads

Masked self-attention

MaskedSelfAttention 𝑄, 𝐾, 𝑉 = softmax − 𝑀 𝑉

𝑞3

In the matrix form, we are computing weighted average over all inputs

To maintain casual relation and only attend to some of the inputs (e.g.
skip the red dashed edge on the left), we can add “attention mask”

𝑀ij = 0, 𝑗 ≤ 𝑖
∞, 𝑗 > 𝑖

Only attend to previous inputs. Skip the computation that are masked out.

∞

0

h1 h2 h3 h4

k1 k2 k3 k4

v1 v2 v3 v4

𝑄𝐾்

𝑑

Attention: O = Softmax(QKT) V
Q: N x d K: N x d A = QKT : N x N A = softmax(A) : N x N V: N x d O = AV: N x d

Challenges:
• Large intermediate results

• Repeated reads/writes from GPU device memory

• Cannot scale to long sequences due to O(N^2) intermediate results

A = mask(A)

Attention optimizations

• LLM Training

• FlashAttention

• LLM Inference

• Recursive Attention

• Flash Decoding

• PagedAttention

Revisit: GPU memory hierarchy

Per-block shared memory
(readable/writable by all

threads in a block)

19 TB/s (20 MB)

Device global memory
(readable/writable by all

threads)

1.5 TB/s (80 GB)

FlashAttention

Key idea: compute attention by blocks to reduce global memory
access

Two main Techniques:

1.Tiling: restructure algorithm to load query/key/value block by
block from global to shared memory

2.Recomputation: don’t store attention matrix from forward, recompute
it in backward

A = softmax(QKT)

* FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

Tiling: decompose large softmax into smaller ones by scaling

1. Load inputs by blocks from global to
shared memory

2. On chip, compute attention output
wrt the block

3. Update output in device memory by
scaling

``

softmax 𝐴ଵ, 𝐴ଶ = 𝛼 × softmax 𝐴ଵ , 𝛽 × softmax 𝐴ଶ

softmax 𝐴ଵ, 𝐴ଶ
𝑉ଵ

𝑉ଶ
= 𝛼 × softmax 𝐴ଵ 𝑉ଵ + 𝛽 × softmax 𝐴ଶ 𝑉ଶ

Tiling

Animation credit: Francisco Massa
(Here K is d from last slide)

(animation) https://jacksoncakes.com/img/in-post/post-flash-attn/flash-attn-viz.mp4

Recomputation: backward pass

By storing softmax normalization factors
from forward (size N), recompute attention in
the backward from inputs in shared memory

Speed up backward pass with increased FLOPs

FlashAttentionStandardAttention

75.266.6GFLOPs

4.4 GB40.3 GBGlobal mem access

7.3 ms41.7 msRuntime

FlashAttention v2: threadblock-level parallelism

How to partition FlasshAttention across
thread blocks?

(An A100 has 108 SMMs -> 108 thread
blocks)

• Step 1: assign different heads to different
thread blocks (16-64 heads)

How to partition FlasshAttention across
thread blocks?

(An A100 has 108 SMMs -> 108 thread
blocks)

• Step 1: assign different heads to different
thread blocks (16-64 heads)

• Step 2: assign different queries
(not K/V) to different thread blocks

Thread blocks cannot communicate; cannot
perform softmax when partitioning keys/values

FlashAttention v2: threadblock-level parallelism

FlashAttention v2: threadblock-level parallelism

Queries

Keys/Values

Block 1

Block 2

Block 3

Block 4

Block 5

No need to handle workload imbalance.

GPU scheduler automatically loads the next block once the
current one completes.

Forward pass

FlashAttention v2: warp-level parallelism

• How to partition FlashAttention across warps within a thread block?

Splitting across K/V requires
communication to add results

Splitting across Q avoids
communications

FlashAttention v2: 2-4x speedup, 10-20x memory reduction

Memory linear in sequence length

Attention optimizations

• LLM Training

• FlashAttention

• LLM Inference

• Recursive Attention

• Flash Decoding

• PagedAttention

Generalizing attention score and value vector

Pre-softmax “attention score”

FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving. MLsys 2025

Define the following “attention weight” for an index set 𝐼

𝑠(𝐼) = log (෍ exp(𝑠௜))

௜∈ூ

Generalize the value vector v for index set 𝐼

𝑣 𝐼 = ∑ softmax 𝑠 ௜𝑣௜௜∈ூ =
∑ ୣ୶୮ ௦೔ ௩೔೔∈಺

ୣ୶୮ ௦ ூ

𝑠௜ =
1

𝑑
𝑞𝑘௜

்

When index set 𝐼 = {𝑖} , s 𝑖 = 𝑠௜, v 𝑖 = 𝑣௜

When index set 𝐼 = {1,2, … 𝑡} , v 𝐼 is the final output of the attention

FlashInfer: recursive attention

Attention computation is communicative and associative, can be done by divide-and-conquer.

This is an important property for a lot of system optimization:
We can recursively combine the vector and “attention score” of any subsets of indices.

𝑠 𝐼 = log ෍ exp 𝑠௜

௜∈ூ

, 𝑣(𝐼) = ෍ softmax 𝑠 ௜𝑣௜ =
∑ exp 𝑠௜ 𝑣௜௜∈ூ

exp(𝑠 𝐼)
௜∈ூ

𝑠 ∪௝ୀଵ
௡ 𝐼௝ = log ෍ exp 𝑠 𝐼௝

௝

, 𝑣 ∪௝ୀଵ
௡ 𝐼௝ = ෍ softmax 𝑠 𝐼ଵ , 𝑠 𝐼ଶ , … ௝𝑣 𝐼௝

௝

For any partition {𝐼௝ } of 𝐼 such that 𝐼 =∪௝ୀଵ
௡ 𝐼௝ , the following relation holds

FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving. MLsys 2025

Attention optimizations

• LLM Training

• FlashAttention

• LLM Inference

• Recursive Attention

• Flash Decoding

• PagedAttention

Generative LLM inference: autoregressive decoding

Generative LLM inference: autoregressive decoding

Generative LLM inference: autoregressive decoding

Generative LLM inference: autoregressive decoding

• Pre-filling phase (0-th iteration):
• Process all input tokens at once

• Decoding phase (all other iterations):
• Process a single token generated from previous iteration
• Use attention keys & values of all previous tokens

• Key-value cache:
• Save attention keys and values for the following iterations to avoid

recomputation

Apply FlashAttention to LLM inference

Pre-filling phase:

• Yes, compute different queries
using different thread blocks/warps

Decoding phase:

• No, there is a single query in the
decoding phase

Attention Comp.

Acc.

LLM

requires
machine

A
cc

.

LL
M

re
qu

ire
s

m
a

ch
in

e

Layer 3

Layer 2
learning

A
cc

.

LL
M

re
qu

ire
s

m
a

ch
in

e

le
ar

ni
ng

Attention Comp.

FlashAttention processes K/V sequentially

Inefficient for requests with long context (many keys/values)

(animation) https://pytorch.org/assets/images/Inference_regular_attn.gif

Flash-decoding parallelizes across keys/values
1. Split keys/values into small chunks

2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits

Key insight: attention is associative and commutative (recall Recursive Attention)

(animation) https://pytorch.org/assets/images/inference_splitkv.gif

Flash-decoding is up to 8x faster than prior work

Attention optimizations

• LLM Training

• FlashAttention

• LLM Inference

• Recursive Attention

• Flash Decoding

• PagedAttention

KV cache dynamically grows and shrinks

KV cache dynamically grows and shrinks

KV cache dynamically grows and shrinks

KV cache dynamically grows and shrinks

Static KV cache management wastes memory

• Pre-allocates contiguous space of memory to the request’s maximum
length

• Memory fragmentation
• Internal fragmentation due to unknown output length
• External fragmentation due to non-uniform per-request max lengths

3 KV Cache slots for
request A’s prompt

Request BPre-allocated slots forA’s output
(Internal frag.)

Slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

0 3 A’s max length

External frag.

…TuringAlan……<resv><resv>…<resv><resv>isIntellige
nce

Artificial

Significant memory waste in KV cache

• Only 20-40% of KV cache is utilized to store actual token states

vllm

PagedAttention

• Application-level memory paging and virtualization for KV cache

Process
A

Process
B

Physical Memory

Request
A

Request
B

KV Cache

Memory management in OS PagedAttention

Page 0
Page 1
Page 2
Page 3
Page 4

KV Block 0
KV Block 1
KV Block 2
KV Block 3
KV Block 4

Paging KV cache space into KV blocks*

• KV block is a fixed-size contiguous
chunk of memory that stores KV
states from left to right

* overloaded in PagedAttention

Attention with virtualized KV cache

Request
A

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks Block table
aisTuringAlan

scientistcomputer

scientistcomputer

aisTuringAlan

FilledPhysical
block number

47

21

––

––

Attention with virtualized KV cache

1. Fetch non-contiguous KV blocks using the block table

2. Apply attention on the fly

Key insight: attention is associative and commutative

Memory management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist”
Completion: “and”

block 0

block 1

block 2

block 3

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks Block table
aisTuringAlan

scientistcomputer

scientistcomputer

aisTuringAlan

FilledPhysical
block number

47

21

––

––

Memory management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist”
Completion: “and”

block 0

block 1

block 2

block 3

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks Block table
aisTuringAlan

andscientistcomputer

scientistcomputer

aisTuringAlan

FilledPhysical
block number

47

21

––

––

Memory management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist”
Completion: “and”

block 0

block 1

block 2

block 3

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks Block table
aisTuringAlan

andscientistcomputer

andscientistcomputer

aisTuringAlan

FilledPhysical
block number

47

31

––

––

Memory management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician”

block 0

block 1

block 2

block 3

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks Block table
aisTuringAlan

mathem
atician

andscientistcomputer

mathemandscientistcomputer

atician

aisTuringAlan

FilledPhysical
block number

47

31

––

––

Memory management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician renowned”

block 0

block 1

block 2

block 3

computer scientist and
mathem
atician

block 5 renowned

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 6

block 7

Logical KV blocks Block table
Allocated on demandaisTuringAlan

mathema
tician

andscientistcomputer

renowned

FilledPhysical
block number

47

41

15

––

Memory efficiency of PagedAttention

Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

No external fragmentation

vllm

Internal
fragmentation

aisTuringAlan

mathemati
cian

andscientistcomputer

renowned

Summarize: techniques for optimizing attention

• FlashInfer: incremental / divide-and-conquer attention compute

• FlashAttention: tiling to reduce GPU global memory access

• Auto-regressive Decoding: pre-filling and decoding phases, KV cache

• FlashDecoding: improving attention’s parallelism by splitting keys/values

• PagedAttention: paging and virtualization to reduce KV cache’s memory
requirement

Recess next week

• No lecture

