
CS6216 Advanced Topics in Machine Learning (Systems)

Application systems: RAGs, Vector DBs & AI Agents

Yao LU
8 Oct 2024

National University of Singapore
School of Computing

Application systems: outline

• Retrieval Augmented Generation (RAG)

• Vector DBs

• AI agents

Retrieval Augmented Generation (RAG)

Directly using LLMs faces problems

• Information lag

• Model hallucination

• Hard to incorporate proprietary data

Retrieval Augmented Generation (RAG)

Directly using LLMs faces problems

• Information lag

• Model hallucination

• Hard to incorporate proprietary data

Instead, we need RAG =

• Retrieval: The user’s request is used to query some
external info - querying a vector store, a keyword search over
text, or querying a database. This is to obtain supporting data
/ context that helps the LLM provide a useful response.

• Augmentation: The supporting data / context is combined
with the user request, often using a template with instructions
to the LLM, to create a prompt.

• Generation: The LLM generates a response to the prompt.

RAG workflow
(Offline) Preprocess

• Chunking documents with simple heuristics (1)

• Compute embeddings w/ a pre-trained model (2)

• Indexing & store the embeddings in a database (2)

(Online) When a user query comes

• Compute embedding for the user query (3)

• Retrieve relevant embeddings from the database (4)

• Assemble a prompt, send it to LLM for result (5-7)

Example: Ask “How many employees?” to an SEC filing

Credits: devoriales.com

~100 pages, tables, text

“Retrieved” context from the document:

Drawbacks of RAG

• What if retrieval goes wrong?
• Raw documents are highly nonstructured

• Documents are too long

• Complex retrieval

• Ranking is wrong

• What if generation goes wrong?
• Prompt is too complex / long

• Generation doesn’t follow instruction /
format requirement

Looking back on the info retrieval literature

Many IR techniques can be applied to RAG

• Better chunking mechanisms

• Prompt compression

• Learning to rank / re-ranking

• Model selection, finetuning & distillation

• Multi-way retrieval

• Graph RAG

Better chunking mechanisms

• Besides the simple fix-length chunking, there are many other ways:

• Overlapping windows to make sure information is captured in some windows

• Structure-aware chunking to avoid breaking in the middle of paragraphs and sentences

• Document based chunking that leverages the document property (Markdown, HTML, LaTeX etc.)

• NLP/Semantic chunking to detect topic changes

• Agentic chucking uses AI agents to decide if a sentence should be added to the previous chunk.

Prompt compression

• More context = more accurate (at cost)

• LLMLingua EMNLP 2023 (Instruction tuning!)

Credits: databricks.com

Prompt compression

• More context = more accurate (at cost)

• LLMLingua EMNLP 2023 (Instruction tuning!)

Learning to rank / re-ranking

• The “retrieval” part can be improved by using
a learned top-k ranking model (should be
cheaper than the later LLM)

• Automatic and free labels from previous runs

• Reduces context length requirements
(improve P@K)

(Ranking)
feedbacks

Learned top-k
ranking model

Model selection, finetuning & distillation

• Finetune or distill the generation model in order
to reduce size, adapt to formatting requirements.
e.g., collect RAG outputs from Llama 70b and
send them to finetune Llama 13b

• Or for different queries, use different generation
models

• Further, we can propagate the gradients to the
embedding phrase, and finetune embedding
models

Finetuned /
distilled model

Multi-vector retrieval

• Classic RAG falls short for complex, multi-modal datasets

• Use different embedding models for inputs of different modality

Credits: Langchain

Graph RAG
• Classic RAG approaches do not consider links between entities.

• They also have a wholistic view of the dataset (with simple
similar search)

• Given a private dataset, GraphRAG from Microsoft generates the
knowledge graph using LLMs, and retrieve for relevant content
for new RAG queries.

An example knowledge graph

Combine with full-text search

• Embedding has “needle-in-the-hay” problem.

• To improve, RAGs can be combined with full-
text search or external tools (SQL, search
engine) to boost accuracy

• Full-text search: BM-25 or LSH.

Raw documents in RAG

• Parsing & cleaning raw documents into structured data is often
challenging: noisy, unstructured, long documents

• Long-context vs RAG

• Long-context LLMs: simple (for developers) but often
more expensive (for users), can lost in the middle

• RAG: cheaper, deterministic security, easier to debug,
up-to-date info

Direct copy & paste

• Parsing: unstructured >> structured data

• Common approaches:
• Rule based parsing: regex, HTML tags
• Computer-vision-based parsing
• NLP based parsing
• LLM based parsing

Parsing unstructured data

• Using per-template, pre-defined rules
• E.g., name = row 2 char 4 to char 10
• Pixel(10, 10) to Pixel(100, 200)
• Search keyword = “Zip Code”

• How to define the rules?
• Manual scripting (when there IS a template)
• For dynamic/noisy inputs:
 ML based vision, NL solutions

Rule-based parsing

Handwritten

Template

Parsing unstructured data

Example from LlamaParse

More complex parsing:

• Tables, figures, charts

• Complex layouts

• Large multi-modal models

Zhang et al. Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction. arXiv 2410.21169v2

Computer-vision-based parsing

CV-based parsing uses pretrained models to extract structural information from images

Computer-vision-based parsing

Layout analysis

Some tasks use standalone, specific models:
• Layout analysis (extract bounding boxes)

• Optical Character Recognition (OCR)

• Math formula recognition (OCR)

• Table and chart recognition

Computer-vision-based parsing

Table recognition

Chart recognition

• Common text pre-processing

• Cleaning (removing words like stopwords, emojis, punctuation, etc.)

• Normalization

• Lemmatization & stemming

• Tools: Regex, NLTK, spaCy, OpenNLP

NL-based data parsing

• Segmentation & tagging
• Some useful applications: detecting title etc.

NL-based data parsing

• Segmentation & tagging
• Some useful applications: detecting title etc.

• Name entity recognition
• Person: Steve Jobs
• Company: Apple
• Location: California
• Column names often use entity names

NL-based data parsing

• Segmentation & tagging
• Some useful applications: detecting title etc.

• Name entity recognition
• Person: Steve Jobs
• Company: Apple
• Location: California
• Column names often use entity names

• Extraction (column = value)
• Rule-based
• RAGs (later)

NL-based data parsing

• One model for all?

• Large multi-modal models, e.g., GPT-4o

• Drawbacks:
• Expensive
• Hard to instruct

LLM-based parsing

LLM-based parsing

https://jina.ai/news/readerlm-v2-frontier-small-language-model-for-html-to-markdown-and-json

• One model for all?

• Large multi-modal models, e.g., GPT-4o
• Expensive
• Hard to instruct

• Small Language Models (SLMs)
• Small = cheap
• Instruction tuned for data parsing
• E.g., ReaderLM-v2 from Jina AI

• No single method can guarantee 100% correct

• Hard to verify

• There are ML/AI solutions to alleviate these problems
• Human-in-the-loop systems and applications design
• Multi-agent framework to cross validate
• Active learning to reduce annotation
• Synthetic data generation to improve parsing robustness

There is no free lunch

Overview

• Retrieval Augmented Generation (RAG)

• Vector DBs

• AI agents

Recent vector databases

...

Top-k similar vectors

Key operator in vector DBs: vector similarity search

Billions of vectors

query (e.g., image)

Evolution of vector data(base)
1999

(Content-based
information retrieval)

2013
(Embedding)

2023
(LLM)

Locality-sensitive hash

Why are vector DBs challenging?

• Easy to get started, but very challenging to achieve high performance, accuracy,
and efficiency

• Three unique properties that contribute to the challenges of vector DBs
• Property P1: Curse of Dimensionality
• Property P2: Approximation
• Property P3: Advanced Vector Data Analytics

Vector indexes (main memory)

• Quantization-based indexes
• E.g., IVF_FLAT, IVF_PQ

• Graph-based indexes
• E.g., NSW, HNSW

• Tree-based indexes
• Hash-based indexes

Widely used in
vector DBs

Quantization

• What’s quantization?
• A way of approximation

• Let’s look at quantization in 1-dimensional space
• 𝑄 𝑥 =

𝑥

10
, where x is an input value

• input = 3, 𝑄 3 =
3

10
= 0.3 = 0

• input = 3, 𝑄 91 =
91

10
= 9.1 = 9

• Those 99 integers can be quantized into a smaller set of 10
buckets

Quantization

• What’s quantization in high-dimensional space?
• It’s basically clustering, e.g., k-means

IVF_FLAT

• Index phase
• Cluster n vectors into K clusters (quantization)
• Centroids: c0…cK-1

• Search phase
• Given a query q, find the closest u clusters

based on centroids
• u: user-defined parameter

• Only scan the vectors in the u clusters

IVF_FLAT

• Question: how to quickly compute the similarity between q and a vector vi in
a cluster?

• Naïve approach
• A for-loop to compute dist(q,vi)
• d steps (where d is dimensionality, e.g., d = 1000)

• Better solutions?
• Remember, we know the centroid c
• We can pre-compute the distance of dist(c,vi)

• Then dist(q,vi) = dist(q,c) + dist(c,vi) (approx.)
• Only need 1 step to compute distance for all vi

q

v1

v2

vi

…

…

q

c vi

Compression

• How to reduce the space overhead of IVF_FLAT?
• Compression

• Example
• Youtube-8M data includes 1.4 billion vectors
• Each vector takes 1024 dimensions (each float takes 32 bits)
• 5.6TB space (memory!)

https://dl.acm.org/doi/10.14778/3424573.3424580

https://dl.acm.org/doi/10.14778/3424573.3424580

Compression: basic idea

• Instead of using 32 bits to represent a float
number

• Use L bits (e.g., L = 8)
• Think of 1-d quantization
• Every float number in a vector is quantized

into [0…2L-1]
• The 1.4billion vectors will take 1.4TB space

(if L = 8)

vector

Every float number is
mapped to [0…255]
(8 bits per number)

Compression: product quantization (PQ)

• How to further reduce the space
overhead?

• Product quantization (PQ)
• Key idea: compress between multiple

dimensions
• Every vector is partitioned into M

subvectors, e.g., M = 8
• Every subvector is compressed using L

bits (e.g., L = 8)

...

IVF_PQ

• Similar as IVF_FLAT
• Difference is that

• Each cluster applies PQ
• using residual vectors

• Search process is the same

Graph-based vector index

• Key ideas
• For each vector, pre-compute the nearest neighbors
• Connect them using a graph
• Convert vector search problem to graph traversal problem

• Navigable Small Worlds (NSW)
• Add new vertices to the index
• For each new vertex (vector), find the closest m neighbors seen so far and connect with them
• Balance: index construction time & query performance

Graph-based vector index

• Hierarchical Navigable Small Worlds (HNSW)
• Skip list + NSW
• Multi-layered NSW
• Address the “bad” entry point issue

• If the entry point is not selected
properly, the search path is long

https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf

https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf

Overview

• Retrieval Augmented Generation (RAG)

• Vector DBs

• AI agents

What are future AI applications like?

Generative
▪ Generate content like text & image

Agentic
▪ Execute complex tasks on behalf of human

48

Zaharia et al. 2024. The Shift from Models to Compound AI Systems

Examples of agentic AI

▪ Personal assistants

▪ Autonomous robots

▪ Gaming agents

▪ Science agents

▪ Web agents

▪ Software agents

50

Key benefits of agentic AI

▪ Useful Interface

▪ Natural interaction with human agency

▪ Strong Capability

▪ Operate with minimal human intervention

▪ Useful Architecture

▪ Intuitive programming paradigm

51

Commander

SafeguardWriter

User

① User Question ⑧ Final Answer

Repeat until
answering the

user’s question
or timeout

What if we prohibit shipping from supplier 1 to roastery 2?

Example workflow of agentic AI

User
What if we prohibit shipping
from supplier 1 to roastery 2?

(Writer nested in Commander, Triggered by User) (Safeguard nested in Commander, Triggered by Writer)

Commander

Example workflow of agentic AI

Agentic programming

▪ Handle more complex tasks /

Improve response quality

o Improve over natural iteration

o Divide & conquer

o Grounding & validation

Agentic programming

▪ Easy to understand, maintain, extend

o Modular composition

o Natural human participation

o Fast & creative experimentation

55

Agentic abstraction

Unify models, tools, human for compound AI systems

Multi-agent orchestration

▪ Static/dynamic
▪ NL/PL
▪ Context sharing/isolation
▪ Cooperation/competition
▪ Centralized/decentralized
▪ Intervention/automation

57

Agentic design patterns

▪ Conversation

▪ Prompting & reasoning

▪ Tool use

▪ Planning

▪ Integrating multiple models,

modalities and memories

58

<Insert Title Here>

Initially developed in FLAML (Nov 2022)

Spined off to a standalone repo (October 2023)​
Standalone GitHub organization AutoGen-AI (August 2024)

https://github.com/autogen-ai

AutoGen: a programming framework for agentic AI

https://github.com/autogen-ai
https://github.com/autogen-ai
https://github.com/autogen-ai

Define agents:
Conversable & Customizable

Get them to talk:
Conversation Programming

Simple programming interface

For more examples: https://autogen-ai.github.io/autogen/docs/notebooks

https://autogen-ai.github.io/autogen/docs/notebooks
https://autogen-ai.github.io/autogen/docs/notebooks
https://autogen-ai.github.io/autogen/docs/notebooks

Example Application

Blogpost writing with reflection Two-Agent Reflection

Nested Chat

Blogpost writing with advanced reflection

Complex task planning and solving with group chat

Complex task planning and solving with group chat

Other multi-agent systems

ChatDev MetaGPT

Many solutions are more application/software engineering

oriented. Lots research opportunities like

• Result interpretability and controllability

• Scalability

• Some guarantee & trustworthy AI

• Collaboration among RL- and LLM- agents

Deep Research

• We will have Bruce Yang from Agnes AI to talk about deep research in
action next week.

• Reading
• Try out deep research from Gemini, OpenAI and Agnes AI, pick a topic you like,

and compare them
• Send it to TA through Canvas message
• You can use Deep Research to research on Deep Research

Logistics

• HW3

• Project mid-term report

	Slide 1: CS6216 Advanced Topics in Machine Learning (Systems) Application systems: RAGs, Vector DBs & AI Agents
	Slide 2: Application systems: outline
	Slide 3: Retrieval Augmented Generation (RAG)
	Slide 4: Retrieval Augmented Generation (RAG)
	Slide 5
	Slide 6: RAG workflow
	Slide 7: Drawbacks of RAG
	Slide 8: Looking back on the info retrieval literature
	Slide 9: Better chunking mechanisms
	Slide 10: Prompt compression
	Slide 11: Prompt compression
	Slide 12: Learning to rank / re-ranking
	Slide 13: Model selection, finetuning & distillation
	Slide 14: Multi-vector retrieval
	Slide 15: Graph RAG
	Slide 16: Combine with full-text search
	Slide 17: Raw documents in RAG
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Overview
	Slide 32: Recent vector databases
	Slide 33: Key operator in vector DBs: vector similarity search
	Slide 34: Evolution of vector data(base)
	Slide 35: Why are vector DBs challenging?
	Slide 36: Vector indexes (main memory)
	Slide 37: Quantization
	Slide 38: Quantization
	Slide 39: IVF_FLAT
	Slide 40: IVF_FLAT
	Slide 41: Compression
	Slide 42: Compression: basic idea
	Slide 43: Compression: product quantization (PQ)
	Slide 44: IVF_PQ
	Slide 45: Graph-based vector index
	Slide 46: Graph-based vector index
	Slide 47: Overview
	Slide 48: What are future AI applications like?
	Slide 49: Examples of agentic AI
	Slide 50
	Slide 51: Key benefits of agentic AI
	Slide 52
	Slide 53
	Slide 54: Agentic programming
	Slide 55: Agentic programming
	Slide 56: Agentic abstraction
	Slide 57: Multi-agent orchestration
	Slide 58: Agentic design patterns
	Slide 59: <Insert Title Here>
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Example Application
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Other multi-agent systems
	Slide 68: Deep Research
	Slide 69: Logistics

