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Application systems: outline

• Retrieval Augmented Generation (RAG)

• Vector DBs

• AI agents



Retrieval Augmented Generation (RAG)

Directly using LLMs faces problems

• Information lag

• Model hallucination

• Hard to incorporate proprietary data
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Instead, we need RAG =  

• Retrieval: The user’s request is used to query some 
external info - querying a vector store, a keyword search over 
text, or querying a database. This is to obtain supporting data 
/ context that helps the LLM provide a useful response.

• Augmentation: The supporting data / context is combined 
with the user request, often using a template with instructions 
to the LLM, to create a prompt.

• Generation: The LLM generates a response to the prompt. 





RAG workflow
(Offline) Preprocess

• Chunking documents with simple heuristics (1)

• Compute embeddings w/ a pre-trained model (2)

• Indexing & store the embeddings in a database (2)

(Online) When a user query comes 

• Compute embedding for the user query (3)

• Retrieve relevant embeddings from the database (4)

• Assemble a prompt, send it to LLM for result (5-7)

Example: Ask “How many employees?” to an SEC filing

Credits: devoriales.com

~100 pages, tables, text

“Retrieved” context from the document: 



Drawbacks of RAG

• What if retrieval goes wrong? 
• Raw documents are highly nonstructured

• Documents are too long

• Complex retrieval

• Ranking is wrong

• What if generation goes wrong? 
• Prompt is too complex / long

• Generation doesn’t follow instruction / 
format requirement

 



Looking back on the info retrieval literature

Many IR techniques can be applied to RAG

• Better chunking mechanisms

• Prompt compression

• Learning to rank / re-ranking

• Model selection, finetuning & distillation

• Multi-way retrieval

• Graph RAG



Better chunking mechanisms

• Besides the simple fix-length chunking, there are many other ways: 

• Overlapping windows to make sure information is captured in some windows

• Structure-aware chunking to avoid breaking in the middle of paragraphs and sentences

• Document based chunking that leverages the document property (Markdown, HTML, LaTeX etc.)

• NLP/Semantic chunking to detect topic changes

• Agentic chucking uses AI agents to decide if a sentence should be added to the previous chunk.



Prompt compression

• More context = more accurate (at cost)

• LLMLingua EMNLP 2023 (Instruction tuning!)

Credits: databricks.com
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Learning to rank / re-ranking

• The “retrieval” part can be improved by using 
a learned top-k ranking model (should be 
cheaper than the later LLM)

• Automatic and free labels from previous runs

• Reduces context length requirements 
(improve P@K)

(Ranking) 
feedbacks

Learned top-k 
ranking model



Model selection, finetuning & distillation

• Finetune or distill the generation model in order 
to reduce size, adapt to formatting requirements. 
e.g., collect RAG outputs from Llama 70b and 
send them to finetune Llama 13b

• Or for different queries, use different generation 
models 

• Further, we can propagate the gradients to the 
embedding phrase, and finetune embedding 
models

Finetuned / 
distilled model



Multi-vector retrieval

• Classic RAG falls short for complex, multi-modal datasets

• Use different embedding models for inputs of different modality

Credits: Langchain



Graph RAG
• Classic RAG approaches do not consider links between entities. 

• They also have a wholistic view of the dataset (with simple 
similar search)

• Given a private dataset, GraphRAG from Microsoft generates the 
knowledge graph using LLMs, and retrieve for relevant content 
for new RAG queries. 

An example knowledge graph



Combine with full-text search

• Embedding has “needle-in-the-hay” problem. 

• To improve, RAGs can be combined with full-
text search or external tools (SQL, search 
engine) to boost accuracy 

• Full-text search: BM-25 or LSH. 



Raw documents in RAG

• Parsing & cleaning raw documents into structured data is often 
challenging: noisy, unstructured, long documents  

• Long-context vs RAG

• Long-context LLMs: simple (for developers) but often 
more expensive (for users), can lost in the middle

• RAG: cheaper, deterministic security, easier to debug, 
up-to-date info

Direct copy & paste



• Parsing: unstructured >> structured data

• Common approaches:
• Rule based parsing: regex, HTML tags
• Computer-vision-based parsing
• NLP based parsing
• LLM based parsing

Parsing unstructured data



• Using per-template, pre-defined rules
• E.g., name = row 2 char 4 to char 10
• Pixel(10, 10) to Pixel(100, 200)
• Search keyword = “Zip Code”

• How to define the rules? 
• Manual scripting (when there IS a template)
• For dynamic/noisy inputs: 
    ML based vision, NL solutions 

Rule-based parsing

Handwritten

Template



Parsing unstructured data

Example from LlamaParse

More complex parsing: 

• Tables, figures, charts

• Complex layouts

• Large multi-modal models



Zhang et al. Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction. arXiv 2410.21169v2

Computer-vision-based parsing

CV-based parsing uses pretrained models to extract structural information from images 



Computer-vision-based parsing

Layout analysis

Some tasks use standalone, specific models:
• Layout analysis (extract bounding boxes)

• Optical Character Recognition (OCR)

• Math formula recognition (OCR)

• Table and chart recognition



Computer-vision-based parsing

Table recognition

Chart recognition



• Common text pre-processing

• Cleaning (removing words like stopwords, emojis, punctuation, etc.) 

• Normalization 

• Lemmatization & stemming

• Tools: Regex, NLTK, spaCy, OpenNLP

NL-based data parsing



• Segmentation & tagging
• Some useful applications: detecting title etc.

NL-based data parsing
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• Column names often use entity names
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• Segmentation & tagging
• Some useful applications: detecting title etc.

• Name entity recognition
• Person: Steve Jobs
• Company: Apple
• Location: California
• Column names often use entity names

• Extraction (column = value)
• Rule-based
• RAGs (later)

NL-based data parsing



• One model for all? 

• Large multi-modal models, e.g., GPT-4o

• Drawbacks: 
• Expensive
• Hard to instruct

LLM-based parsing



LLM-based parsing

https://jina.ai/news/readerlm-v2-frontier-small-language-model-for-html-to-markdown-and-json

• One model for all? 

• Large multi-modal models, e.g., GPT-4o
• Expensive
• Hard to instruct

• Small Language Models (SLMs)
• Small = cheap
• Instruction tuned for data parsing
• E.g., ReaderLM-v2 from Jina AI 



• No single method can guarantee 100% correct

• Hard to verify

• There are ML/AI solutions to alleviate these problems
• Human-in-the-loop systems and applications design
• Multi-agent framework to cross validate
• Active learning to reduce annotation
• Synthetic data generation to improve parsing robustness

There is no free lunch



Overview

• Retrieval Augmented Generation (RAG)

• Vector DBs

• AI agents



Recent vector databases



...

Top-k similar vectors

Key operator in vector DBs: vector similarity search

Billions of vectors

query (e.g., image)



Evolution of vector data(base)
1999

(Content-based 
information retrieval)

2013
(Embedding)

2023
(LLM)

Locality-sensitive hash



Why are vector DBs challenging?

• Easy to get started, but very challenging to achieve high performance, accuracy, 
and efficiency

• Three unique properties that contribute to the challenges of vector DBs
• Property P1: Curse of Dimensionality
• Property P2: Approximation
• Property P3: Advanced Vector Data Analytics



Vector indexes (main memory)

• Quantization-based indexes
• E.g., IVF_FLAT, IVF_PQ

• Graph-based indexes
• E.g., NSW, HNSW

• Tree-based indexes
• Hash-based indexes

Widely used in 
vector DBs



Quantization

• What’s quantization?
• A way of approximation

• Let’s look at quantization in 1-dimensional space
• 𝑄 𝑥 =

𝑥

10
, where x is an input value

• input = 3, 𝑄 3 =
3

10
= 0.3 = 0

• input = 3, 𝑄 91 =
91

10
= 9.1 = 9

• Those 99 integers can be quantized into a smaller set of 10 
buckets



Quantization

• What’s quantization in high-dimensional space?
• It’s basically clustering, e.g., k-means



IVF_FLAT

• Index phase
• Cluster n vectors into K clusters (quantization)
• Centroids: c0…cK-1

• Search phase
• Given a query q, find the closest u clusters

based on centroids
• u: user-defined parameter

• Only scan the vectors in the u clusters



IVF_FLAT

• Question: how to quickly compute the similarity between q and a vector vi in 
a cluster?

• Naïve approach
• A for-loop to compute dist(q,vi)
• d steps (where d is dimensionality, e.g., d = 1000)

• Better solutions?
• Remember, we know the centroid c
• We can pre-compute the distance of dist(c,vi)

• Then dist(q,vi) = dist(q,c) + dist(c,vi)  (approx.)
• Only need 1 step to compute distance for all vi

q

v1

v2

vi

…

…

q

c vi



Compression

• How to reduce the space overhead of IVF_FLAT?
• Compression

• Example
• Youtube-8M data includes 1.4 billion vectors
• Each vector takes 1024 dimensions (each float takes 32 bits)
• 5.6TB space (memory!)

https://dl.acm.org/doi/10.14778/3424573.3424580 

https://dl.acm.org/doi/10.14778/3424573.3424580


Compression: basic idea

• Instead of using 32 bits to represent a float 
number

• Use L bits (e.g., L = 8)
• Think of 1-d quantization
• Every float number in a vector is quantized 

into [0…2L-1]
• The 1.4billion vectors will take 1.4TB space 

(if L = 8)

vector

Every float number is 
mapped to [0…255]
(8 bits per number)



Compression: product quantization (PQ)

• How to further reduce the space 
overhead?

• Product quantization (PQ)
• Key idea: compress between multiple 

dimensions
• Every vector is partitioned into M 

subvectors, e.g., M = 8
• Every subvector is compressed using L 

bits (e.g., L = 8)

...



IVF_PQ

• Similar as IVF_FLAT
• Difference is that 

• Each cluster applies PQ
• using residual vectors 

• Search process is the same



Graph-based vector index

• Key ideas
• For each vector, pre-compute the nearest neighbors
• Connect them using a graph
• Convert vector search problem to graph traversal problem

• Navigable Small Worlds (NSW)
• Add new vertices to the index
• For each new vertex (vector), find the closest m neighbors seen so far and connect with them
• Balance: index construction time & query performance



Graph-based vector index

• Hierarchical Navigable Small Worlds (HNSW)
• Skip list + NSW
• Multi-layered NSW
• Address the “bad” entry point issue

• If the entry point is not selected
properly, the search path is long

https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf 

https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf


Overview

• Retrieval Augmented Generation (RAG)

• Vector DBs

• AI agents



What are future AI applications like?

Generative
▪ Generate content like text & image

Agentic
▪ Execute complex tasks on behalf of human

48

Zaharia et al. 2024. The Shift from Models to Compound AI Systems



Examples of agentic AI

▪ Personal assistants

▪ Autonomous robots

▪ Gaming agents

▪ Science agents

▪ Web agents

▪ Software agents



50



Key benefits of agentic AI

▪ Useful Interface

▪ Natural interaction with human agency

▪ Strong Capability

▪ Operate with minimal human intervention

▪ Useful Architecture

▪ Intuitive programming paradigm

51



Commander

SafeguardWriter

User

① User Question ⑧ Final Answer

Repeat until 
answering the 

user’s question 
or timeout

What if we prohibit shipping from supplier 1 to roastery 2? 

Example workflow of agentic AI



User
What if we prohibit shipping 
from supplier 1 to roastery 2? 

(Writer nested in Commander, Triggered by User) (Safeguard nested in Commander, Triggered by Writer)

Commander

Example workflow of agentic AI



Agentic programming

▪ Handle more complex tasks / 

Improve response quality

o Improve over natural iteration

o Divide & conquer

o Grounding & validation



Agentic programming

▪ Easy to understand, maintain, extend

o Modular composition

o Natural human participation

o Fast & creative experimentation

55



Agentic abstraction

Unify models, tools, human for compound AI systems



Multi-agent orchestration

▪ Static/dynamic
▪ NL/PL
▪ Context sharing/isolation
▪ Cooperation/competition
▪ Centralized/decentralized
▪ Intervention/automation

57



Agentic design patterns

▪ Conversation

▪ Prompting & reasoning

▪ Tool use

▪ Planning

▪ Integrating multiple models,

modalities and memories

58



<Insert Title Here>

Initially developed in FLAML (Nov 2022)

Spined off to a standalone repo (October 2023)​
Standalone GitHub organization AutoGen-AI (August 2024)

https://github.com/autogen-ai

AutoGen: a programming framework for agentic AI

https://github.com/autogen-ai
https://github.com/autogen-ai
https://github.com/autogen-ai


Define agents: 
Conversable & Customizable

Get them to talk:
Conversation Programming



Simple programming interface



For more examples: https://autogen-ai.github.io/autogen/docs/notebooks

https://autogen-ai.github.io/autogen/docs/notebooks
https://autogen-ai.github.io/autogen/docs/notebooks
https://autogen-ai.github.io/autogen/docs/notebooks


Example Application

Blogpost writing with reflection Two-Agent Reflection



Nested Chat

Blogpost writing with advanced reflection



Complex task planning and solving with group chat



Complex task planning and solving with group chat



Other multi-agent systems

ChatDev MetaGPT

Many solutions are more application/software engineering 

oriented. Lots research opportunities like

• Result interpretability and controllability

• Scalability

• Some guarantee & trustworthy AI

• Collaboration among RL- and LLM- agents

 



Deep Research

• We will have Bruce Yang from Agnes AI to talk about deep research in 
action next week. 

• Reading
• Try out deep research from Gemini, OpenAI and Agnes AI, pick a topic you like, 

and compare them
• Send it to TA through Canvas message
• You can use Deep Research to research on Deep Research



Logistics

• HW3

• Project mid-term report
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